SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1740 634X ;pers:(Blennow Kaj 1958)"

Sökning: L773:1740 634X > Blennow Kaj 1958

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Blennow, Kaj, 1958, et al. (författare)
  • Biomarkers in Amyloid-β Immunotherapy Trials in Alzheimer's Disease.
  • 2014
  • Ingår i: Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology. - : Springer Science and Business Media LLC. - 1740-634X. ; 39
  • Tidskriftsartikel (refereegranskat)abstract
    • Drug candidates directed against amyloid-β (Aβ) are mainstream in Alzheimer's disease (AD) drug development. Active and passive Aβ immunotherapy is the principle that has come furthest, both in number and in stage of clinical trials. However, an increasing number of reports on major difficulties in identifying any clinical benefit in phase II-III clinical trials on this type of anti-Aβ drug candidates have caused concern among researchers, pharmaceutical companies, and other stakeholders. This has provided critics of the amyloid cascade hypothesis with fire for their arguments that Aβ deposition may merely be a bystander, and not the cause, of the disease or that the amyloid hypothesis may only be valid for the familial form of AD. On the other hand, most researchers argue that it is the trial design that will need refinement to allow for identifying a positive clinical effect of anti-Aβ drugs. A consensus in the field is that future trials need to be performed in an earlier stage of the disease and that biomarkers are essential to guide and facilitate drug development. In this context, it is reassuring that, in contrast to most brain disorders, research advances in the AD field have led to both imaging (magnetic resonance imaging (MRI) and PET) and cerebrospinal fluid (CSF) biomarkers for the central pathogenic processes of the disease. AD biomarkers will have a central role in future clinical trials to enable early diagnosis, and Aβ biomarkers (CSF Aβ42 and amyloid PET) may be essential to allow for testing a drug on patients with evidence of brain Aβ pathology. Pharmacodynamic Aβ and amyloid precursor protein biomarkers will be of use to verify target engagement of a drug candidate in humans, thereby bridging the gap between mechanistic data from transgenic AD models (that may not be relevant to the neuropathology of human AD) and large and expensive phase III trials. Last, downstream biomarker evidence (CSF tau proteins and MRI volumetry) that the drug ameliorates neurodegeneration will, together with beneficial clinical effects on cognition and functioning, be essential for labeling an anti-Aβ drug as disease modifying.Neuropsychopharmacology advance online publication, 17 July 2013; doi:10.1038/npp.2013.154.
  •  
2.
  • Jakobsson, Joel, et al. (författare)
  • Altered Concentrations of Amyloid Precursor Protein Metabolites in the Cerebrospinal Fluid of Patients with Bipolar Disorder
  • 2013
  • Ingår i: Neuropsychopharmacology. - : Springer Science and Business Media LLC. - 0893-133X .- 1740-634X. ; 38:4, s. 664-672
  • Tidskriftsartikel (refereegranskat)abstract
    • Bipolar disorder is a psychiatric disorder characterized by recurrent episodes of mania/hypomania and depression. Progressive cognitive dysfunction such as impairments in executive function and verbal memory is common in euthymic bipolar patients. The cerebrospinal fluid has previously been used to study neurodegenerative processes in Alzheimer’s disease, from which changes in three core biomarkers have emerged as indicative of degeneration: amyloid β, total tau, and hyperphosphorylated tau. Here, neurodegeneration in bipolar disorder was investigated by assessing the association between bipolar disorder and cerebrospinal fluid biomarkers for neurodegenerative processes. Cerebrospinal fluid was obtained from 139 bipolar disorder patients and 71 healthy controls. Concentrations of total and phosphorylated tau, amyloid β1-42, amyloid β38/β40/β42, and the soluble forms of amyloid precursor protein were measured in patients vs controls. The concentrations of the soluble forms of amyloid precursor protein were significantly lower in bipolar patients compared with controls. The amyloid β42/amyloid β38 and the amyloid β42/amyloid β40 ratios were higher in bipolar patients than controls. There were no discernible differences in the concentrations of total/phosphorylated tau, amyloid β1-42, or amyloid β38/β40/β42. The concentrations of the biomarkers within the bipolar patient group were further associated with different ongoing medical treatments and diagnostic subgroups. The findings suggest that the amyloid precursor protein metabolism is altered in bipolar disorder. The results may have implications for the understanding of the pathophysiology of bipolar disorder and for the development of treatment strategies. Importantly, there were no signs of an Alzheimer-like neurodegenerative process among bipolar patients.
  •  
3.
  • Jakobsson, Joel, et al. (författare)
  • Elevated Concentrations of Neurofilament Light Chain in The Cerebrospinal Fluid of Bipolar Disorder Patients.
  • 2014
  • Ingår i: Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology. - : Springer Science and Business Media LLC. - 1740-634X. ; 39
  • Tidskriftsartikel (refereegranskat)abstract
    • Bipolar disorder (BD) is characterized by mood swings between manic and depressive states. The etiology and pathogenesis of BD is unclear, but many of the affected cognitive domains, as well as neuroanatomical abnormalities, resemble symptoms and signs of small vessel disease. In small vessel disease, cerebrospinal fluid (CSF) markers reflecting damages in different cell types and subcellular structures of the brain have been established. Hence, we hypothesized that CSF markers related to small vessel disease may also be applicable as biomarkers for bipolar disorder. To investigate this hypothesis, we sampled CSF from 133 patients with bipolar disorder and 86 healthy controls. The concentrations of neurofilament light chain (NF-L), myelin basic protein (MBP), S100B, and heart-fatty acid binding protein (H-FABP) were measured in CSF and analyzed in relation to diagnosis, clinical characteristics, and ongoing medications. Hereby we found an elevation of the marker of subcortical axonal damage, NF-L, in bipolar subjects. We also identified positive associations between NF-L and treatment with atypical antipsychotics, MBP and lamotrigine, and H-FABP and lithium. These findings indicate axonal damage as an underlying neuropathological component of bipolar disorder, though the clinical value of elevated NF-L remains to be validated in follow-up studies. The associations between current medications and CSF brain injury markers might aid in the understanding of both therapeutic and adverse effects of these drugs.Neuropsychopharmacology accepted article peview online, 03 April 2014; doi:10.1038/npp.2014.81.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy