SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "L773:1748 0221 OR L773:1748 0221 ;lar1:(liu)"

Search: L773:1748 0221 OR L773:1748 0221 > Linköping University

  • Result 1-10 of 16
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Anastasopoulos, M., et al. (author)
  • Multi-Grid detector for neutron spectroscopy : Results obtained on time-of-flight spectrometer CNCS
  • 2017
  • In: Journal of Instrumentation. - : IOP PUBLISHING LTD. - 1748-0221. ; 12:4
  • Journal article (peer-reviewed)abstract
    • The Multi-Grid detector technology has evolved from the proof-of-principle and characterisation stages. Here we report on the performance of the Multi-Grid detector, the MG.CNCS prototype, which has been installed and tested at the Cold Neutron Chopper Spectrometer, CNCS at SNS. This has allowed a side-by-side comparison to the performance of 3He detectors on an operational instrument. The demonstrator has an active area of 0.2 m2. It is specifically tailored to the specifications of CNCS. The detector was installed in June 2016 and has operated since then, collecting neutron scattering data in parallel to the He-3 detectors of CNCS. In this paper, we present a comprehensive analysis of this data, in particular on instrument energy resolution, rate capability, background and relative efficiency. Stability, gamma-ray and fast neutron sensitivity have also been investigated. The effect of scattering in the detector components has been measured and provides input to comparison for Monte Carlo simulations. All data is presented in comparison to that measured by the 3He detectors simultaneously, showing that all features recorded by one detector are also recorded by the other. The energy resolution matches closely. We find that the Multi-Grid is able to match the data collected by 3He, and see an indication of a considerable advantage in the count rate capability. Based on these results, we are confident that the Multi-Grid detector will be capable of producing high quality scientific data on chopper spectrometers utilising the unprecedented neutron flux of the ESS.
  •  
2.
  • Birch, J, et al. (author)
  • Investigation of background in large-area neutron detectors due to alpha emission from impurities in aluminium
  • 2015
  • In: Journal of Instrumentation. - : IOP PUBLISHING LTD. - 1748-0221. ; 10
  • Journal article (peer-reviewed)abstract
    • Thermal neutron detector based on films of (B4C)-B-10 have been developed as an alternative to He-3 detectors. In particular, The Multi-Grid detector concept is considered for future large area detectors for ESS and ILL instruments. An excellent signal-to-background ratio is essential to attain expected scientific results. Aluminium is the most natural material for the mechanical structure of of the Multi-Grid detector and other similar concepts due to its mechanical and neutronic properties. Due to natural concentration of alpha emitters, however, the background from alpha particles misidentified as neutrons can be unacceptably high. We present our experience operating a detector prototype affected by this issue. Monte Carlo simulations have been used to confirm the background as alpha particles. The issues have been addressed in the more recent implementations of the Multi-Grid detector by the use of purified aluminium as well as Ni-plating of standard aluminium. The result is the reduction in background by two orders of magnitude. A new large-area prototype has been built incorporating these modifications.
  •  
3.
  • Mauri, G., et al. (author)
  • The Multi-Blade Boron-10-based neutron detector performance using a focusing reflectometer
  • 2020
  • In: Journal of Instrumentation. - : IOP PUBLISHING LTD. - 1748-0221. ; 15:3
  • Journal article (peer-reviewed)abstract
    • The Multi-Blade is a Boron-10-based neutron detector designed for neutron reflectometers and developed for the two instruments (Estia and FREIA) planned for the European Spallation Source in Sweden. A demonstrator has been installed at the AMOR reflectometer at the Paul Scherrer Institut (PSI - Switzerland). AMOR exploits the Selene guide concept and can be considered a scaled-down demonstrator of Estia. The results of these tests are discussed. It will be shown how the characteristics of the Multi-Blade detector are features that allow the focusing reflectometry operation mode. Additionally the performance of the Multi-Blade, in terms of rate capability, exceeds current state-of-the-art technology. The improvements with respect to the previous prototypes are also highlighted; from background considerations to the linear and angular uniformity response of the detector.
  •  
4.
  • Pfeiffer, Dorothea, et al. (author)
  • The mu TPC method: improving the position resolution of neutron detectors based on MPGDs
  • 2015
  • In: Journal of Instrumentation. - : IOP Publishing: Hybrid Open Access. - 1748-0221. ; 10
  • Journal article (peer-reviewed)abstract
    • Due to the He-3 crisis, alternatives to the standard neutron detection techniques are becoming urgent. In addition, the instruments of the European Spallation Source (ESS) require advances in the state of the art of neutron detection. The instruments need detectors with excellent neutron detection efficiency, high rate capabilities and unprecedented spatial resolution. The Macromolecular Crystallography instrument (NMX) requires a position resolution in the order of 200 mu m over a wide angular range of incoming neutrons. Solid converters in combination with Micro Pattern Gaseous Detectors (MPGDs) are proposed to meet the new requirements. Charged particles rising from the neutron capture have usually ranges larger than several millimetres in gas. This is apparently in contrast with the requirements for the position resolution. In this paper, we present an analysis technique, new in the field of neutron detection, based on the Time Projection Chamber (TPC) concept. Using a standard Single-GEM with the cathode coated with (B4C)-B-10, we extract the neutron interaction point with a resolution of better than sigma = 200 mu m.
  •  
5.
  • Piscitelli, F., et al. (author)
  • Characterization of the Multi-Blade 10B-based detector at the CRISP reflectometer at ISIS for neutron reflectometry at ESS
  • 2018
  • In: Journal of Instrumentation. - : IOP PUBLISHING LTD. - 1748-0221. ; 13:5
  • Journal article (peer-reviewed)abstract
    • The Multi-Blade is a Boron-10-based gaseous thermal neutron detector developed to face the challenge arising in neutron reflectometry at neutron sources. Neutron reflectometers are challenging instruments in terms of instantaneous counting rate and spatial resolution. This detector has been designed according to the requirements given by the reflectometers at the European Spallation Source (ESS) in Sweden. The Multi-Blade has been installed and tested on the CRISP reflectometer at the ISIS neutron and muon source in U.K.. The results on the detailed detector characterization are discussed in this manuscript.
  •  
6.
  • Piscitelli, F., et al. (author)
  • The Multi-Blade Boron-10-based neutron detector for high intensity neutron reflectometry at ESS
  • 2017
  • In: Journal of Instrumentation. - : IOP PUBLISHING LTD. - 1748-0221. ; 12:3
  • Journal article (peer-reviewed)abstract
    • The Multi-Blade is a Boron-10-based gaseous detector introduced to face the challenge arising in neutron reflectometry at pulsed neutron sources. Neutron reflectometers are the most challenging instruments in terms of instantaneous counting rate and spatial resolution. This detector has been designed to cope with the requirements set for the reflectometers at the upcoming European Spallation Source (ESS) in Sweden. Based on previous results obtained at the Institut Laue-Langevin (ILL) in France, an improved demonstrator has been built at ESS and tested at the Budapest Neutron Centre (BNC) in Hungary and at the Source Testing Facility (STF) at the Lund University in Sweden. A detailed description of the detector and the results of the tests are discussed in this manuscript.
  •  
7.
  • Stefanescu, I., et al. (author)
  • A B-10-based neutron detector with stacked MultiWire Proportional Counters and macrostructured cathodes
  • 2013
  • In: Journal of Instrumentation. - : Institute of Physics: Hybrid Open Access. - 1748-0221. ; 8
  • Journal article (peer-reviewed)abstract
    • We present the results of the measurements of the detection efficiency for a 4.7 angstrom neutron beam incident upon a detector incorporating a stack of up to five MultiWire Proportional Counters (MWPC) with Boron-coated cathodes. The cathodes were made of Aluminum and had a surface exhibiting millimeter-deep V-shaped grooves of 45 degrees, upon which the thin Boron film was deposited by DC magnetron sputtering. The incident neutrons interacting with the converter layer deposited on the sidewalls of the grooves have a higher capture probability, owing to the larger effective absorption film thickness. This leads to a higher overall detection efficiency for the grooved cathode when compared to a cathode with a flat surface. Both the experimental results and the predictions of the GEANT4 model suggests that a 5-counter detector stack with coated grooved cathodes has the same efficiency as a 7-counter stack with flat cathodes. The reduction in the number of counters in the stack without altering the detection efficiency will prove highly beneficial for large-area position-sensitive detectors for neutron scattering applications, for which the cost-effective manufacturing of the detector and associated readout electronics is an important objective. The proposed detector concept could be a technological option for one of the new chopper spectrometers and other instruments planned to be built at the future European Spallation Source in Sweden. These results with macrostructured cathodes generally apply not just to MWPCs but to other gaseous detectors as well.
  •  
8.
  •  
9.
  • Antonova, M., et al. (author)
  • Baby MIND : a magnetized segmented neutrino detector for the WAGASCI experiment
  • 2017
  • In: Journal of Instrumentation. - : Institute of Physics (IOP). - 1748-0221. ; 12:07, s. 1-6
  • Journal article (peer-reviewed)abstract
    • T2K (Tokai-to-Kamioka) is a long-baseline neutrino experiment in Japan designed to study various parameters of neutrino oscillations. A near detector complex (ND280) is located 280 m downstream of the production target and measures neutrino beam parameters before any oscillations occur. ND280’s measurements are used to predict the number and spectra of neutrinos in the Super-Kamiokande detector at the distance of 295 km. The difference in the target material between the far (water) and near (scintillator, hydrocarbon) detectors leads to the main non-cancelling systematic uncertainty for the oscillation analysis. In order to reduce this uncertainty a new WAter-Grid-And-SCintillator detector (WAGASCI) has been developed. A magnetized iron neutrino detector (Baby MIND) will be used to measure momentum and charge identification of the outgoing muons from charged current interactions. The Baby MIND modules are composed of magnetized iron plates and long plastic scintillator bars read out at the both ends with wavelength shifting fibers and silicon photomultipliers. The front-end electronics board has been developed to perform the readout and digitization of the signals from the scintillator bars. Detector elements were tested with cosmic rays and in the PS beam at CERN. The obtained results are presented in this paper.
  •  
10.
  • Bennati, Paolo, et al. (author)
  • Preliminary study of a new gamma imager for on-line proton range monitoring during proton radiotherapy
  • 2017
  • In: Journal of Instrumentation. - : Institute of Physics Publishing (IOPP). - 1748-0221. ; 12:5
  • Journal article (peer-reviewed)abstract
    • We designed and tested new concept imaging devices, based on a thin scintillating crystal, aimed at the online monitoring of the range of protons in tissue during proton radiotherapy. The proposed crystal can guarantee better spatial resolution and lower sensitivity with respect to a thicker one, at the cost of a coarser energy resolution. Two different samples of thin crystals were coupled to a position sensitive photo multiplier tube read out by 64 independent channels electronics. The detector was equipped with a knife-edge Lead collimator that defined a reasonable field of view of about 10 cm in the target. Geant4 Monte Carlo simulations were used to optimize the design of the experimental setup and assess the accuracy of the results. Experimental measurements were carried out at the Skandion Clinic, the recently opened proton beam facility in Uppsala, Sweden. PMMA and water phantoms studies were performed with a first prototype based on a round 6.0 mm thick Cry019 crystal and with a second detector based on a thinner 5 × 5 cm2, 2.0 mm thick LFS crystal. Phantoms were irradiated with mono-energetic proton beams whose energy was in the range between 110 and 160 MeV. According with the simulations and the experimental data, the detector based on LFS crystal seems able to identify the peak of prompt-gamma radiation and its results are in fair agreement with the expected shift of the proton range as a function of energy. The count rate remains one of the most critical limitations of our system, which was able to cope with only about 20% of the clinical dose rate. Nevertheless, we are confident that our study might provide the basis for developing a new full-functional system.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view