Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1864 5631 OR L773:1864 564X "

Sökning: L773:1864 5631 OR L773:1864 564X

Sortera/gruppera träfflistan
  • Abdel-Magied, Ahmed F., et al. (författare)
  • Chemical and Photochemical Water Oxidation Mediated by an Efficient Single-Site Ruthenium Catalyst
  • 2016
  • Ingår i: ChemSusChem. - 1864-5631 .- 1864-564X. ; 9:24, s. 3448-3456
  • Tidskriftsartikel (refereegranskat)abstract
    • Water oxidation is a fundamental step in artificial photosynthesis for solar fuels production. In this study, we report a single-site Ru-based water oxidation catalyst, housing a dicarboxylate-benzimidazole ligand, that mediates both chemical and light-driven oxidation of water efficiently under neutral conditions. The importance of the incorporation of the negatively charged ligand framework is manifested in the low redox potentials of the developed complex, which allows water oxidation to be driven by the mild one-electron oxidant [Ru(bpy)(3)](3+) (bpy = 2,2'-bipyridine). Furthermore, combined experimental and DFT studies provide insight into the mechanistic details of the catalytic cycle.
  • Agostini, Marco, 1987, et al. (författare)
  • Designing a Safe Electrolyte Enabling Long‐Life Li/S Batteries
  • 2019
  • Ingår i: ChemSusChem. - 1864-5631 .- 1864-564X. ; 12:18, s. 4176-4184
  • Tidskriftsartikel (refereegranskat)abstract
    • Lithium–sulfur (Li/S) batteries suffer from “shuttle” reactions in which soluble polysulfide species continuously migrate to and from the Li metal anode. As a consequence, the loss of active material and reactions at the surface of Li limit the practical applications of Li/S batteries. LiNO3 has been proposed as an electrolyte additive to reduce the shuttle reactions by aiding the formation of a stable solid electrolyte interphase (SEI) at the Li metal, limiting polysulfide shuttling. However, LiNO3 is continuously consumed during cycling, especially at low current rates. Therefore, the Li/S battery cycle life is limited by the LiNO3 concentration in the electrolyte. In this work, an ionic liquid (IL) [N-methyl-(n-butyl)pyrrolidinium bis(trifluoromethylsulfonyl)imide] was used as an additive to enable longer cycle life of Li/S batteries. By tuning the IL concentration, an enhanced stability of the SEI and lower flammability of the solutions were demonstrated, that is, higher safety of the battery. The Li/S cell built with a high sulfur mass loading (4 mg cm−2) and containing the IL-based electrolyte demonstrated a stable capacity of 600 mAh g−1 for more than double the number of cycles of a cell containing LiNO3 additive.
  • Agostini, Marco, 1987, et al. (författare)
  • Rational Design of Low Cost and High Energy Lithium Batteries through Tailored Fluorine-free Electrolyte and Nanostructured S/C Composite
  • 2018
  • Ingår i: ChemSusChem. - 1864-5631 .- 1864-564X. ; 11:17, s. 2981-2986
  • Tidskriftsartikel (refereegranskat)abstract
    • We report a new Li–S cell concept based on an optimized F-free catholyte solution and a high loading nanostructured C/S composite cathode. The Li2S8present in the electrolyte ensures both buffering against active material dissolution and Li+conduction. The high S loading is obtained by confining elemental S (≈80 %) in the pores of a highly ordered mesopores carbon (CMK3). With this concept we demonstrate stabilization of a high energy density and excellent cycling performance over 500 cycles. This Li–S cell has a specific capacity that reaches over 1000 mA h g−1, with an overall S loading of 3.6 mg cm−2and low electrolyte volume (i.e., 10 μL cm−2), resulting in a practical energy density of 365 Wh kg−1. The Li–S system proposed thus meets the requirements for large scale energy storage systems and is expected to be environmentally friendly and have lower cost compared with the commercial Li-ion battery thanks to the removal of both Co and F from the overall formulation.
  • Agostini, Marco, 1987, et al. (författare)
  • Stabilizing the Performance of High-Capacity Sulfur Composite Electrodes by a New Gel Polymer Electrolyte Configuration
  • 2017
  • Ingår i: ChemSusChem. - 1864-5631 .- 1864-564X. ; 10:17, s. 3490-3496
  • Tidskriftsartikel (refereegranskat)abstract
    • Increased pollution and the resulting increase in global warming are drawing attention to boosting the use of renewable energy sources such as solar or wind. However, the production of energy from most renewable sources is intermittent and thus relies on the availability of electrical energy-storage systems with high capacity and at competitive cost. Lithium–sulfur batteries are among the most promising technologies in this respect due to a very high theoretical energy density (1675 mAh g?1) and that the active material, sulfur, is abundant and inexpensive. However, a so far limited practical energy density, life time, and the scaleup of materials and production processes prevent their introduction into commercial applications. In this work, we report on a simple strategy to address these issues by using a new gel polymer electrolyte (GPE) that enables stable performance close to the theoretical capacity of a low cost sulfur–carbon composite with high loading of active material, that is, 70 % sulfur. We show that the GPE prevents sulfur dissolution and reduces migration of polysulfide species to the anode. This functional mechanism of the GPE membranes is revealed by investigating both its morphology and the Li-anode/GPE interface at various states of discharge/charge using Raman spectroscopy.
  • Alammar, Tarek, et al. (författare)
  • Ionic-Liquid-Assisted Microwave Synthesis of Solid Solutions of Sr1-xBaxSnO3 Perovskite for Photocatalytic Applications
  • 2017
  • Ingår i: ChemSusChem. - 1864-5631 .- 1864-564X. ; 10:17, s. 3387-3401
  • Tidskriftsartikel (refereegranskat)abstract
    • Nanocrystalline Sr1-xBaxSnO3 (x=0, 0.2, 0.4, 0.8, 1) perovskite photocatalysts were prepared by microwave synthesis in an ionic liquid (IL) and subsequent heat-treatment. The influence of the Sr/Ba substitution on the structure, crystallization, morphology, and photocatalytic efficiency was investigated and the samples were fully characterized. On the basis of X-ray diffraction results, as the Ba content in the SrSnO3 lattice increases, a symmetry increase was observed from the orthorhombic perovskite structure for SrSnO3 to the cubic BaSnO3 structure. The analysis of the sample morphology by SEM reveals that the Sr1-xBaxSnO3 samples favor the formation of nanorods (500nm-5m in diameter and several micrometers long). The photophysical properties were examined by UV/Vis diffuse reflectance spectroscopy. The band gap decreases from 3.85 to 3.19eV with increasing Ba2+ content. Furthermore, the photocatalytic properties were evaluated for the hydroxylation of terephthalic acid (TA). The order of the activities for TA hydroxylation was Sr0.8Ba0.2SnO3>SrSnO3>BaSnO3>Sr0.6Ba0.4SnO3>Sr0.2Ba0.8SnO3. The highest photocatalytic activity was observed for Sr0.8Ba0.2SnO3, and this can be attributed to the synergistic impacts of the modification of the crystal structure and morphology, the relatively large surface area associated with the small crystallite size, and the suitable band gap and band-edge position.
  • Anugwom, Ikenna, et al. (författare)
  • Switchable ionic liquids as delignification solvents for lignocellulosic materials
  • 2014
  • Ingår i: ChemSusChem. - : John Wiley & Sons. - 1864-5631 .- 1864-564X. ; 7:4, s. 1170-1176
  • Tidskriftsartikel (refereegranskat)abstract
    • The transformation of lignocellulosic materials into potentially valuable resources is compromised by their complicated structure. Consequently, new economical and feasible conversion/fractionation techniques that render value-added products are intensely investigated. Herein an unorthodox and feasible fractionation method of birch chips (B. pendula) using a switchable ionic liquid (SIL) derived from an alkanol amine (monoethanol amine, MEA) and an organic super base (1,8-diazabicyclo-[5.4.0]-undec-7-ene, DBU) with two different trigger acid gases (CO2 and SO2 ) is studied. After SIL treatment, the dissolved fractions were selectively separated by a step-wise method using an antisolvent to induce precipitation. The SIL was recycled after concentration and evaporation of anti-solvent. The composition of undissolved wood after MEA-SO2 -SIL treatment resulted in 80 wt % cellulose, 10 wt % hemicelluloses, and 3 wt % lignin, whereas MEA-CO2 -SIL treatment resulted in 66 wt % cellulose, 12 wt % hemicelluloses and 11 wt % lignin. Thus, the MEA-SO2 -SIL proved more efficient than the MEA-CO2 -SIL, and a better solvent for lignin removal. All fractions were analyzed by gas chromatography (GC), Fourier transform infrared spectroscopy (FT-IR), (13) C nuclear magnetic resonance spectroscopy (NMR) and Gel permeation chromatography (GPC).
  • Balakshin, Mikhail Yu, et al. (författare)
  • New Opportunities in the Valorization of Technical Lignins.
  • 2021
  • Ingår i: ChemSusChem. - 1864-5631 .- 1864-564X. ; 14:4, s. 1016-1036
  • Tidskriftsartikel (refereegranskat)abstract
    • Sugar-based biorefineries have faced significant economic challenges. Biorefinery lignins are often classified as low-value products (fuel or low-cost chemical feedstock) mainly due to low lignin purities in the crude material. However, recent research has shown that biorefinery lignins have a great chance of being successfully used as high-value products, which in turn should result in an economy renaissance of the whole biorefinery idea. This critical review summarizes recent developments from our groups, along with the state-of-the-art in the valorization of technical lignins, with the focus on biorefinery lignins. A beneficial synergistic effect of lignin and cellulose mixtures used in different applications (wood adhesives, carbon fiber and nanofibers, thermoplastics) has been demonstrated. This phenomenon causes crude biorefinery lignins, which contain a significant amount of residual crystalline cellulose, to perform superior to high-purity lignins in certain applications. Where previously specific applications required high-purity and/or functionalized lignins with narrow molecular weight distributions, simple green processes for upgrading crude biorefinery lignin are suggested here as an alternative. These approaches can be easily combined with lignin micro-/nanoparticles (LMNP) production. The processes should also be cost-efficient compared to traditional lignin modifications. Biorefinery processes allow much greater flexibility in optimizing the lignin characteristics desirable for specific applications than traditional pulping processes. Such lignin engineering, at the same time, requires an efficient strategy capable of handling large datasets to find correlations between process variables, lignin structures and properties and finally their performance in different applications.
  • Baltrusaitis, J., et al. (författare)
  • Photoelectrochemical Hydrogen Production on alpha-Fe2O3 (0001): Insights from Theory and Experiments
  • 2014
  • Ingår i: ChemSusChem. - 1864-5631 .- 1864-564X. ; 7:1, s. 162-171
  • Tidskriftsartikel (refereegranskat)abstract
    • The photoelectrochemical (PEC) decomposition of organic compounds in wastewater is investigated by using quantum chemical (DFT) methods to evaluate alternatives to water splitting for the production of renewable and sustainable hydrogen. Methanol is used as a model organic species for the theoretical evaluations of electrolysis on the surface of the widely available semiconductor hematite, alpha-Fe2O3, a widely studied photocatalyst. Three different alpha-Fe2O3 surface terminations were investigated, including the predominant surface found in aqueous electrolytes, (OH)(3)-R. The PEC oxidation of methanol is energetically downhill, producing CO2 and protons. The protons are reduced to hydrogen on the cathode. Experimental PEC measurements were also performed for several polyalcoholic compounds, glycerol, erythritol, and xylitol, on alpha-Fe2O3 as the photocatalyst and showed high incident-photon-to-current-efficiencies (IPCE) that were much greater than those of water splitting. Interestingly, high IPCEs were observed for hydrogen production from polyalcohols in the absence of any applied bias, which was not thought to be possible on hematite. These results support the potential application of PEC for hydrogen production by using widely available hematite for the PEC oxidation of selected components of organic wastewater present in large quantities from anthropogenic and industrial sources.
  • Beller, M., et al. (författare)
  • Chemistry Future : Priorities and Opportunities from the Sustainability Perspective
  • 2017
  • Ingår i: ChemSusChem. - : John Wiley & Sons. - 1864-5631 .- 1864-564X. ; 10:1, s. 6-13
  • Tidskriftsartikel (refereegranskat)abstract
    • To celebrate the 10 year anniversary of ChemSusChem, we as the chairmen of the editorial board are writing this Essay to summarize important scientific contributions to our journal during the past decade in terms of sustainable science and technology. Bibliometric analysis of published papers show that biorefinery, solar energy conversion, energy-storage materials, and carbon dioxide utilizations attracted most attention in this area. According to our own knowledge and understanding and from the sustainability point of view, we are also pointing out those research directions that we believe can play key roles in the future chemistry to meet the grand challenges in energy and environment. Hopefully, these perspective aspects will provide the readers with new angles to look at the chemistry in the coming decades and inspire the development of new technologies to make our society sustainable.
  • Björnerbäck, Fredrik, et al. (författare)
  • Highly Porous Hypercrosslinked Polymers Derived from Biobased Molecules
  • 2019
  • Ingår i: ChemSusChem. - 1864-5631 .- 1864-564X. ; 12:4, s. 839-847
  • Tidskriftsartikel (refereegranskat)abstract
    • Highly porous and hyper-cross-linked polymers (HCPs) have a range of applications and are typically synthesized in an unsustainable manner. Herein, HCPs were synthesized from abundant biobased or biorelated compounds in sulfolane with iron(III) chloride as Lewis acid catalyst. As reactants, quercetin, tannic acid, phenol, 1,4-dimethoxybenzene, glucose, and a commercial bark extract were used. The HCPs had high CO2 uptake (up to 3.94 mmol g(-1) at 0 degrees C and 1 bar), total pore volumes (up to 1.86 cm(3) g(-1)), and specific surface areas (up to 1440 m(2) g(-1)). H-1 NMR, C-13 NMR, and IR spectroscopy, wide-angle X-ray scattering, elemental analysis, and SEM revealed, for example, that the HCPs consisted of amorphous and cross-linked aromatic and phenolic structures with significant contents of aliphatics, oxygen, and sulfur.
Skapa referenser, mejla, bekava och länka
Typ av publikation
tidskriftsartikel (138)
forskningsöversikt (6)
konstnärligt arbete (1)
Typ av innehåll
refereegranskat (143)
övrigt vetenskapligt (1)
Sun, Licheng (22)
Sun, Licheng, 1962- (12)
Hagfeldt, Anders (10)
Samec, Joseph S. M. (7)
Liao, Rong-Zhen (4)
Siegbahn, Per E. M. (4)
visa fler...
Hedin, Niklas (4)
Matic, Aleksandar, 1 ... (4)
Mikkola, Jyri-Pekka (4)
Edström, Kristina (4)
Wu, X. (3)
Wang, M. (3)
Yang, X. (3)
Kärkäs, Markus D. (3)
Martín-Matute, Belén (3)
Kloo, Lars (3)
Wang, Mei (3)
Rensmo, Håkan (3)
Strømme, Maria, 1970 ... (3)
Agostini, Marco, 198 ... (3)
Sadd, Matthew, 1994 (3)
Lim, Du Hyun, 1983 (3)
Graetzel, Michael (3)
Johansson, Erik M. J ... (3)
Valvo, Mario (3)
Lee, H. (2)
Liu, C. (2)
Liu, H. (2)
Johansson, Erik (2)
Shatskiy, Andrey (2)
Johnston, Eric V. (2)
Hulteberg, Christian (2)
Liu, Jia (2)
Cong, Jiayan (2)
Hammarström, Leif, 1 ... (2)
Chang, J. F. (2)
Grönbeck, Henrik, 19 ... (2)
Jannasch, Patric (2)
Tai, Cheuk-Wai (2)
Sun, Junliang (2)
Ott, Sascha (2)
Brutti, Sergio (2)
Ahn, J. (2)
Boschloo, Gerrit (2)
Rosén, Johanna (2)
Edvinsson, Tomas, Pr ... (2)
Ågren, Hans (2)
Brandell, Daniel (2)
Moth-Poulsen, Kasper ... (2)
Brandell, Daniel, 19 ... (2)
visa färre...
Uppsala universitet (51)
Kungliga Tekniska Högskolan (48)
Stockholms universitet (28)
Chalmers tekniska högskola (13)
Umeå universitet (9)
Lunds universitet (7)
visa fler...
Luleå tekniska universitet (3)
Linköpings universitet (2)
RISE (2)
Sveriges Lantbruksuniversitet (2)
Göteborgs universitet (1)
Karlstads universitet (1)
Högskolan Dalarna (1)
visa färre...
Engelska (144)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (117)
Teknik (28)
Lantbruksvetenskap (1)


Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy