SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1864 5631 OR L773:1864 564X ;pers:(Hagfeldt Anders)"

Sökning: L773:1864 5631 OR L773:1864 564X > Hagfeldt Anders

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ferdowsi, Parnian, et al. (författare)
  • Molecular Design of Efficient Organic D-A-pi-A Dye Featuring Triphenylamine as Donor Fragment for Application in Dye-Sensitized Solar Cells
  • 2018
  • Ingår i: ChemSusChem. - : WILEY-V C H VERLAG GMBH. - 1864-5631 .- 1864-564X. ; 11:2, s. 494-502
  • Tidskriftsartikel (refereegranskat)abstract
    • A metal-free organic sensitizer, suitable for the application in dye-sensitized solar cells (DSSCs), has been designed, synthesized and characterized both experimentally and theoretically. The structure of the novel donor-acceptor--bridge-acceptor (D-A-pi-A) dye incorporates a triphenylamine (TPA) segment and 4-(benzo[c][1,2,5]thiadiazol-4-ylethynyl)benzoic acid (BTEBA). The triphenylamine unit is widely used as an electron donor for photosensitizers, owing to its nonplanar molecular configuration and excellent electron-donating capability, whereas 4-(benzo[c][1,2,5]thiadiazol-4-ylethynyl)benzoic acid is used as an electron acceptor unit. The influences of I-3(-)/I-, [Co(bpy)(3)](3+/2+) and [Cu(tmby)(2)](2+/+) (tmby=4,4,6,6-tetramethyl-2,2-bipyridine) as redox electrolytes on the DSSC device performance were also investigated. The maximal monochromatic incident photon-to-current conversion efficiency (IPCE) reached 81% and the solar light to electrical energy conversion efficiency of devices with [Cu(tmby)(2)](2+/+) reached 7.15%. The devices with [Co(bpy)(3)](3+/2+) and I-3(-)/I- electrolytes gave efficiencies of 5.22% and 6.14%, respectively. The lowest device performance with a [Co(bpy)(3)](3+/2+)-based electrolyte is attributed to increased charge recombination.
  •  
2.
  • Ferdowsi, Parnian, et al. (författare)
  • Molecular Engineering of Simple Metal-Free Organic Dyes Derived from Triphenylamine for Dye-Sensitized Solar Cell Applications
  • 2020
  • Ingår i: ChemSusChem. - : Wiley. - 1864-5631 .- 1864-564X. ; 13:1, s. 212-220
  • Tidskriftsartikel (refereegranskat)abstract
    • Two new metal-free organic sensitizers, L156 and L224, were designed, synthesized, and characterized for application in dye-sensitized solar cells (DSCs). The structures of the dyes contain a triphenylamine (TPA) segment and 4-(benzo[c][1,2,5]thiadiazol-4-yl)benzoic acid as electron-rich and -deficient moieties, respectively. Two different pi bridges, thiophene and 4,8-bis(4-hexylphenyl)benzo[1,2-b:4,5-b ']dithiophene, were used for L156 and L224, respectively. The influence of iodide/triiodide, [Co(bpy)(3)](2+/3+) (bpy=2,2 '-bipyridine), and [Cu(tmby)(2)](2+/+) (tmby=4,4 ',6,6 '-tetramethyl-2,2 '-bipyridine) complexes as redox electrolytes and 18 NR-T and 30 NR-D transparent TiO2 films on the DSC device performance was investigated. The L156-based DSC with [Cu(tmby)(2)](2+/+) complexes as the redox electrolyte resulted in the best performance of 9.26 % and a remarkably high open-circuit voltage value of 1.1 V (1.096 V), with a short-circuit current of 12.2 mA cm(-2) and a fill factor of 0.692, by using 30 NR-D TiO2 films. An efficiency of up to 21.9 % was achieved under a 1000 lx indoor light source, which proved that dye L156 was also an excellent candidate for indoor applications. The maximal monochromatic incident-photon-to-current conversion efficiency of L156-30 NR-D reached up to 70 %.
  •  
3.
  • Hao, Yan, et al. (författare)
  • Molecular Design to Improve the Performance of Donor-p Acceptor Near-IR Organic Dye-Sensitized Solar Cells
  • 2011
  • Ingår i: ChemSusChem. - : Wiley-Blackwell. - 1864-5631 .- 1864-564X. ; 4:11, s. 1601-1605
  • Tidskriftsartikel (refereegranskat)abstract
    • Near-dye experience: Long, flexible carbon chains in the lateral anchoring groups of the donor part of a donor-π acceptor organic dye increase the power conversion efficiency dramatically. This performance enhancement can be ascribed to the prevention of the formation of molecular aggregates on the semiconductor nanoparticles, resulting in a lower recombination rate between transported electrons and I3- ions. A cell based on the new dye, HY113, gives a maximum IPCE value of 93% at 660nm.
  •  
4.
  • Li, Hairong, et al. (författare)
  • Comparative Studies on Rigid pi Linker-Based Organic Dyes : Structure-Property Relationships and Photovoltaic Performance
  • 2014
  • Ingår i: ChemSusChem. - : Wiley. - 1864-5631 .- 1864-564X. ; 7:12, s. 3396-3406
  • Tidskriftsartikel (refereegranskat)abstract
    • A series of six structurally correlated donor-pi bridge-acceptor organic dyes were designed, synthesized, and applied as sensitizers in dye-sensitized solar cells. Using the most widely studied donor (triarylamine) and cyclopenta[1,2-b:5,4-b’]dithiophene or cyclopenta[1,2-b: 5,4-b’] dithiophene[2’,1’:4,5]thieno[2,3-d] thiophene as pi spacers, their structure-property relationships were investigated in depth by photophysical techniques and theoretical calculations. It was found that the photovoltaic performance of these dyes largely depends on their electronic structures, which requires synergistic interaction between donors and acceptors. Increasing the electron richness of the donor or the elongation of pi-conjugated bridges does not necessarily lead to higher performance. Rather, it is essential to rationally design the dyes by balancing their light-harvesting capability with achieving suitable energy levels to guarantee unimpeded charge separation and transport.
  •  
5.
  • Li, Hairong, et al. (författare)
  • Hole-Transporting Small Molecules Based on Thiophene Cores for High Efficiency Perovskite Solar Cells
  • 2014
  • Ingår i: ChemSusChem. - : Wiley. - 1864-5631 .- 1864-564X. ; 7:12, s. 3420-3425
  • Tidskriftsartikel (refereegranskat)abstract
    • Two new electron-rich molecules, 2,3,4,5-tetra[4,4'-bis(methoxyphenyl)aminophen-4 ''-yl]-thiophene (H111) and 4,4',5,5'-tetra[4,4'-bis(methoxyphenyl) aminophen-4 ''-yl]-2,2'-bithiophene (H112), which contain thiophene cores with arylamine side groups, are reported. When used as the hole-transporting material (HTM) in perovskite-based solar cell devices, power conversion efficiencies of up to 15.4% under AM 1.5G solar simulation were obtained. This is the highest efficiency achieved with HTMs not composed of 2,2',7,7'-tetrakis(N,N'-di-p-methoxyphenylamine)-9,9'-spirobifluorene (spiro-OMeTAD) and its isomers. Both HTMs, especially H111, have great potential to replace expensive spiro-OMeTAD given their much simpler and less expensive syntheses.
  •  
6.
  •  
7.
  • Saygili, Yasemin, et al. (författare)
  • Planar Perovskite Solar Cells with High Open-CircuitVoltage Containing a Supramolecular Iron Complex as HoleTransport Material Dopant
  • 2018
  • Ingår i: ChemSusChem. - : Wiley. - 1864-5631 .- 1864-564X. ; 19, s. 1-9
  • Tidskriftsartikel (refereegranskat)abstract
    • n perovskite solar cells (PSCs), the most commonly used hole transport material (HTM) is spiro-OMeTAD, which is typically doped by metalorganic complexes, for example, based on Co, to improve charge transport properties and thereby enhance the photovoltaic performance of the device. In this study, we report a new hemicage-structured iron complex, 1,3,5-tris(5'-methyl-2,2'-bipyridin-5-yl)ethylbenzene Fe(III)-tris(bis(trifluoromethylsulfonyl)imide), as a p-type dopant for spiro-OMeTAD. The formal redox potential of this compound was measured as 1.29 V vs. the standard hydrogen electrode, which is slightly (20 mV) more positive than that of the commercial cobalt dopant FK209. Photoelectron spectroscopy measurements confirm that the iron complex acts as an efficient p-dopant, as evidenced in an increase of the spiro-OMeTAD work function. When fabricating planar PSCs with the HTM spiro-OMeTAD doped by 5 mol % of the iron complex, a power conversion efficiency of 19.5 % (AM 1.5G, 100 mW cm-2 ) is achieved, compared to 19.3 % for reference devices with FK209. Open circuit voltages exceeding 1.2 V at 1 sun and reaching 1.27 V at 3 suns indicate that recombination at the perovskite/HTM interface is low when employing this iron complex. This work contributes to recent endeavors to reduce recombination losses in perovskite solar cells.
  •  
8.
  • Xu, Bo, et al. (författare)
  • AgTFSI as p-Type Dopant for Efficient and Stable Solid-State Dye-Sensitized and Perovskite Solar Cells
  • 2014
  • Ingår i: ChemSusChem. - : Wiley. - 1864-5631 .- 1864-564X. ; 7:12, s. 3252-3256
  • Tidskriftsartikel (refereegranskat)abstract
    • A silver-based organic salt, silver bis(trifluoromethane-sulfonyl) imide (AgTFSI), was employed as an effective p-type dopant for the triarylamine-based organic hole-transport material Spiro-MeOTAD, which has been successfully applied in solid-state dye-sensitized solar cells (ssDSCs) and perovskite solar cells (PSCs). The power conversion efficiencies (PCEs) of AgTFSI-doped devices improved by 20%, as compared to the device based on the commonly used oxygen doping both for ssDSCs and PSCs. Moreover, the solid-state dye-sensitized devices exposed to AgTFSI as dopant showed considerably better stability than those of oxygen doped, qualifying this p-type dopant as a promising alterative for the preparation of highly efficient as well as stable ssDSCs and PSCs for the future.
  •  
9.
  • Yun, Sining, et al. (författare)
  • Enhanced Performance of Supported HfO2 Counter Electrodes for Redox Couples Used in Dye-Sensitized Solar Cells
  • 2014
  • Ingår i: ChemSusChem. - : Wiley. - 1864-5631 .- 1864-564X. ; 7:2, s. 442-450
  • Tidskriftsartikel (refereegranskat)abstract
    • Mesoporous-graphitic-carbon-supported HfO2 (HfO2-MGC) nanohybrids were synthesized by using a soft-template route. Characterization and a systematic investigation of the catalytic properties, stability, and catalytic mechanism were performed for HfO2-MGC counter electrodes (CEs) in dye-sensitized solar cells (DSSCs). The new HfO2-MGC as a CE in DSSCs showed a surprisingly high efficiency of 7.75% for the triiodide/iodide redox couple and 3.69% for the disulfide/thiolate redox couple, greater than the Pt electrode in the corresponding electrolyte system, which opens up a possibility for its practical application.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy