SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1864 5631 OR L773:1864 564X ;pers:(Hulteberg Christian)"

Sökning: L773:1864 5631 OR L773:1864 564X > Hulteberg Christian

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abdelaziz, Omar Y, et al. (författare)
  • Lignin Depolymerisation under Continuous-Flow Conditions : Highlights of Recent Developments
  • 2020
  • Ingår i: ChemSusChem. - : Wiley. - 1864-564X .- 1864-5631. ; 13:17, s. 4382-4384
  • Tidskriftsartikel (refereegranskat)abstract
    • Lignin is a poly-aromatic polymer contained in the plant cell wall, and it is considered the most abundant non-carbohydrate polymer on Earth. The aromaticity and richness of its functional groups render lignin an attractive starting biomacromolecule for conversion into a variety of value-added products. The development of successful strategies for lignin valorisation infers the design of effective depolymerisation protocols. Most research on lignin depolymerisation have focused on batch-mode processing, whereas only a few studies have tackled such lignin transformation in continuous reactor systems. In the present paper, we highlight the emerging developments within the concept of continuous lignin processing and the challenges remaining in realising the efficient valorisation of lignin using this technology concept. A special focus is set on the hydrothermal conversion of technical lignin under continuous-flow conditions, together with suggestions for future research.
  •  
2.
  • Abdelaziz, Omar Y., et al. (författare)
  • On the Oxidative Valorization of Lignin to High-Value Chemicals : A Critical Review of Opportunities and Challenges
  • 2022
  • Ingår i: ChemSusChem. - : Wiley. - 1864-5631 .- 1864-564X. ; 15:20
  • Forskningsöversikt (refereegranskat)abstract
    • The efficient valorization of lignin is crucial if we are to replace current petroleum-based feedstock and establish more sustainable and competitive lignocellulosic biorefineries. Pulp and paper mills and second-generation biorefineries produce large quantities of low-value technical lignin as a by-product, which is often combusted on-site for energy recovery. This Review focuses on the conversion of technical lignins by oxidative depolymerization employing heterogeneous catalysts. It scrutinizes the current literature describing the use of various heterogeneous catalysts in the oxidative depolymerization of lignin and includes a comparison of the methods, catalyst loadings, reaction media, and types of catalyst applied, as well as the reaction products and yields. Furthermore, current techniques for the determination of product yields and product recovery are discussed. Finally, challenges and suggestions for future approaches are outlined.
  •  
3.
  • Argyropoulos, Dimitris D. S., et al. (författare)
  • Kraft Lignin: A Valuable, Sustainable Resource, Opportunities and Challenges
  • 2023
  • Ingår i: ChemSusChem. - : John Wiley and Sons Inc. - 1864-5631 .- 1864-564X. ; 16:23
  • Forskningsöversikt (refereegranskat)abstract
    • Kraft lignin, a by-product from the production of pulp, is currently incinerated in the recovery boiler during the chemical recovery cycle, generating valuable bioenergy and recycling inorganic chemicals to the pulping process operation. Removing lignin from the black liquor or its gasification lowers the recovery boiler load enabling increased pulp production. During the past ten years, lignin separation technologies have emerged and the interest of the research community to valorize this underutilized resource has been invigorated. The aim of this Review is to give (1) a dedicated overview of the kraft process with a focus on the lignin, (2) an overview of applications that are being developed, and (3) a techno-economic and life cycle asseeements of value chains from black liquor to different products. Overall, it is anticipated that this effort will inspire further work for developing and using kraft lignin as a commodity raw material for new applications undeniably promoting pivotal global sustainability concerns.
  •  
4.
  • Polukeev, Alexey V., et al. (författare)
  • Iridium Catalyzed Dehydrogenation in a Continuous Flow Reactor as a Tool Towards Practical On-Board Hydrogen Generation From LOHCs
  • 2022
  • Ingår i: ChemSusChem. - : Wiley. - 1864-564X .- 1864-5631. ; 15:8
  • Tidskriftsartikel (refereegranskat)abstract
    • To enable the large-scale use of hydrogen fuel cells for mobility applications, convenient methods for on-board hydrogen storage and release need to be developed. A promising approach is liquid organic hydrogen carriers (LOHCs), since these are safe, available on a large scale and compatible with existing re-fuelling infrastructure. Usually, LOHC dehydrogenation is carried out in batch-type reactors by transition metals and their complexes and suffers from slow H 2 release kinetics and/or inability to reach high energy density by weight due to low conversion or the need to dilute the reaction mixture. Here we report the use of a continuous flow reactor in combination with a heterogenized iridium pincer complex, which enables a tremendous increase in LOHC dehydrogenation rates. Thus, dehydrogenation of isopropanol is performed in a regime that in terms of gravimetric energy density, hydrogen generation rate and precious metal content is potentially compatible with applications in a fuel-cell powered car.
  •  
5.
  • Prothmann, Jens, et al. (författare)
  • Non-targeted analysis strategy for the identification of phenolic compounds in complex technical lignin samples
  • 2020
  • Ingår i: ChemSusChem. - : Wiley. - 1864-564X .- 1864-5631. ; 13:17, s. 4605-4612
  • Tidskriftsartikel (refereegranskat)abstract
    • Lignin is the second most abundant biopolymer in nature and a promising renewable resource for aromatic chemicals. For the understanding of different lignin isolation and conversion processes, the identification of phenolic compounds is of importance. However, due to the vast number of possible chemical transformations, the prediction of produced phenolic structures is challenging, and a non-targeted analysis method is therefore needed. In this study, we present a non-targeted analysis method for the identification of phenolic compounds using ultra-high-performance supercritical fluid chromatography/high-resolution multiple stage tandem mass spectrometry combined with a Kendrick mass defect-based classification model. The method was applied to a Lignoboost Kraft lignin (LKL), a sodium Lignosulphonate lignin (SLS) and a depolymerised Kraft lignin (DKL) sample. In total, 260 tentative phenolic compounds were identified in the LKL sample, 50 in the SLS sample and 77 in the DKL sample.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy