SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1873 2402 ;pers:(Bergen Sarah E)"

Sökning: L773:1873 2402 > Bergen Sarah E

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abé, Christoph, et al. (författare)
  • Longitudinal Cortical Thickness Changes in Bipolar Disorder and the Relationship to Genetic Risk, Mania, and Lithium Use.
  • 2020
  • Ingår i: Biological psychiatry. - : Elsevier BV. - 1873-2402 .- 0006-3223. ; 87:3, s. 271-281
  • Tidskriftsartikel (refereegranskat)abstract
    • Bipolar disorder (BD) is a highly heritable psychiatric disorder characterized by episodes of manic and depressed mood states and associated with cortical brain abnormalities. Although the course of BD is often progressive, longitudinal brain imaging studies are scarce. It remains unknown whether brain abnormalities are static traits of BD or result from pathological changes over time. Moreover, the genetic effect on implicated brain regions remains unknown.Patients with BD and healthy control (HC) subjects underwent structural magnetic resonance imaging at baseline (123 patients, 83 HC subjects) and after 6 years (90 patients, 61 HC subjects). Cortical thickness maps were generated using FreeSurfer. Using linear mixed effects models, we compared longitudinal changes in cortical thickness between patients with BD and HC subjects across the whole brain. We related our findings to genetic risk for BD and tested for effects of demographic and clinical variables.Patients showed abnormal cortical thinning of temporal cortices and thickness increases in visual/somatosensory brain areas. Thickness increases were related to genetic risk and lithium use. Patients who experienced hypomanic or manic episodes between time points showed abnormal thinning in inferior frontal cortices. Cortical changes did not differ between diagnostic BD subtypes I and II.In the largest longitudinal BD study to date, we detected abnormal cortical changes with high anatomical resolution. We delineated regional effects of clinical symptoms, genetic factors, and medication that may explain progressive brain changes in BD. Our study yields important insights into disease mechanisms and suggests that neuroprogression plays a role in BD.
  •  
2.
  • Charney, Alexander W, et al. (författare)
  • Contribution of Rare Copy Number Variants to Bipolar Disorder Risk Is Limited to Schizoaffective Cases.
  • 2019
  • Ingår i: Biological psychiatry. - : Elsevier BV. - 1873-2402 .- 0006-3223. ; 86:2, s. 110-119
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic risk for bipolar disorder (BD) is conferred through many common alleles, while a role for rare copy number variants (CNVs) is less clear. Subtypes of BD including schizoaffective disorder bipolar type (SAB), bipolar I disorder (BD I), and bipolar II disorder (BD II) differ according to the prominence and timing of psychosis, mania, and depression. The genetic factors contributing to the combination of symptoms among these subtypes are poorly understood.Rare large CNVs were analyzed in 6353 BD cases (3833 BD I [2676 with psychosis, 850 without psychosis, and 307 with unknown psychosis history], 1436 BD II, 579 SAB, and 505 BD not otherwise specified) and 8656 controls. CNV burden and a polygenic risk score (PRS) for schizophrenia were used to evaluate the relative contributions of rare and common variants to risk of BD, BD subtypes, and psychosis.CNV burden did not differ between BD and controls when treated as a single diagnostic entity. However, burden in SAB was increased relative to controls (p = .001), BD I (p = .0003), and BD II (p = .0007). Burden and schizophrenia PRSs were increased in SAB compared with BD I with psychosis (CNV p = .0007, PRS p = .004), and BD I without psychosis (CNV p = .0004, PRS p = 3.9 × 10-5). Within BD I, psychosis was associated with increased schizophrenia PRSs (p = .005) but not CNV burden.CNV burden in BD is limited to SAB. Rare and common genetic variants may contribute differently to risk for psychosis and perhaps other classes of psychiatric symptoms.
  •  
3.
  • Hughes, Timothy, et al. (författare)
  • A Loss-of-Function Variant in a Minor Isoform of ANK3 Protects Against Bipolar Disorder and Schizophrenia.
  • 2016
  • Ingår i: Biological psychiatry. - : Elsevier BV. - 1873-2402 .- 0006-3223. ; 80:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Ankyrin-3 (ANK3) was one of the first genes to reach significance in a bipolar disorder genome-wide association study. Many subsequent association studies confirmed this finding and implicated this gene in schizophrenia. However, the exact nature of the role of ANK3 in the pathophysiology remains elusive. In particular, the specific isoforms involved and the nature of the imbalance are unknown.
  •  
4.
  • Song, Jie, et al. (författare)
  • Specificity in Etiology of Subtypes of Bipolar Disorder : Evidence From a Swedish Population-Based Family Study
  • 2018
  • Ingår i: Biological Psychiatry. - : Elsevier. - 0006-3223 .- 1873-2402. ; 84:11, s. 810-816
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Uncertainty remains whether bipolar I disorder (BDI) and bipolar II disorder (BDII) differ etiologically. We used a population-based family sample to examine the etiological boundaries between BDI and BDII by assessing their familial aggregation/coaggregation and by assessing the coaggregation between them and schizophrenia, depression, attention-deficit/hyperactivity disorder, eating disorders, autism spectrum disorder, substance use disorders, anxiety disorders, and personality disorders.Methods: By linking Swedish national registers, we established a population-based cohort (N = 15,685,511) and identified relatives with different biological relationships. Odds ratios (ORs) were used to measure the relative risk of BDI and BDII in relatives of individuals diagnosed with BDI (n = 4309) and BDII (n = 4178). The heritability for BDI and BDII and the genetic correlation across psychiatric disorders were estimated by variance decomposition analysis.Results: Compared with the general population, the OR of BDI was 17.0 (95% confidence interval [CI] 13.1-22.0) in first-degree relatives of BDI patients, higher than that of BDII patients (OR 9.8, 95% CI 7.7-12.5). The ORs of BDII were 13.6 (95% CI 10.2-18.2) in first-degree relatives of BDII patients and 9.8 (95% CI 7.7-12.4) in relatives of BDI patients. The heritabilities for BDI and BDII were estimated at 57% (95% CI 32%-79%) and 46% (95% CI 21%-67%), respectively, with a genetic correlation estimated as 0.78 (95% CI 0.36-1.00). The familial coaggregation of other psychiatric disorders, in particular schizophrenia, showed different patterns for BDI and BDII.Conclusions: Our results suggest a distinction between BDI and BDII in etiology, partly due to genetic differences.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy