SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1939 327X ;pers:(Renström Erik)"

Sökning: L773:1939 327X > Renström Erik

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Barg, Sebastian, et al. (författare)
  • A Subset of 50 Secretory Granules in Close Contact With L-Type Ca(2+) Channels Accounts for First-Phase Insulin Secretion in Mouse beta-Cells.
  • 2002
  • Ingår i: Diabetes. - 1939-327X .- 0012-1797. ; 51 Suppl 1, s. 74-82
  • Tidskriftsartikel (refereegranskat)abstract
    • Capacitance measurements were applied to mouse pancreatic beta-cells to elucidate the cellular mechanisms underlying biphasic insulin secretion. We report here that only <50 of the beta-cell's >10,000 granules are immediately available for release. The releasable granules tightly associate with the voltage-gated alpha(1C) Ca(2+) channels, and it is proposed that the release of these granules accounts for first-phase insulin secretion. Subsequent replenishment of the releasable pool by priming of previously nonreleasable granules is required for second-phase insulin secretion. The latter reaction depends on intragranular acidification due to the concerted action of granular bafilomycin-sensitive v-type H(+)-ATPase and 4,4-diisothiocyanostilbene-2,2-disulfonate--blockable ClC-3 Cl(-) channels. Lowering the cytoplasmic ATP/ADP ratio prevents granule acidification, granule priming, and refilling of the releasable pool. The latter finding provides an explanation to the transient nature of insulin secretion elicited by, for example, high extracellular K(+) in the absence of metabolizable fuels.
  •  
2.
  • Granhall, Charlotte, et al. (författare)
  • Separately inherited defects in insulin exocytosis and beta-cell glucose metabolism contribute to type 2 diabetes.
  • 2006
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 55:12, s. 3494-3500
  • Tidskriftsartikel (refereegranskat)abstract
    • The effects of genetic variation on molecular functions predisposing to type 2 diabetes are still largely unknown. Here, in a specifically designed diabetes model, we couple separate gene loci to mechanisms of P-cell pathology. Niddm1i is a major glucose-controlling 16-Mb region in the diabetic GK rat that causes defective insulin secretion and corresponds to loci in humans and mice associated with type 2 diabetes. Generation of a series of congenic rat strains harboring different parts of GK-derived Niddm1i enabled fine mapping of this locus. Congenic strains carrying the GK genotype distally in Niddm1i displayed reduced insulin secretion in response to both glucose and high potassium, as well as decreased single-cell exocytosis. By contrast, a strain carrying the GK genotype proximally in Niddm1i exhibited both intact insulin release in response to high potassium and intact single-cell exocytosis, but insulin secretion was suppressed when stimulated by glucose. Islets from this strain also failed to respond to glucose by increasing the cellular ATP-to-ADP ratio. Changes in P-cell mass did not contribute to the secretory defects. We conclude that the failure of insulin secretion in type 2 diabetes includes distinct functional defects in glucose metabolism and insulin exocytosis of the P-cell and that their genetic fundaments are encoded by different loci within Niddm1i.
  •  
3.
  • Gromada, J, et al. (författare)
  • Glucagon-like peptide I increases cytoplasmic calcium in insulin-secreting beta TC3-cells by enhancement of intracellular calcium mobilization
  • 1995
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 44:7, s. 767-774
  • Tidskriftsartikel (refereegranskat)abstract
    • In the insulin-secreting beta-cell line beta TC3, stimulation with 11.2 mmol/l glucose caused a rise in the intracellular free Ca2+ concentration ([Ca2+]i) in only 18% of the tested cells. The number of glucose-responsive cells increased after pretreatment of the cells with glucagon-like peptide I (GLP-I)(7-36)amide and at 10(-11) mol/l; 84% of the cells responded to glucose with a rise in [Ca2+]i. GLP-I(7-36)amide induces a rapid increase in [Ca2+]i only in cells exposed to elevated glucose concentrations (> or = 5.6 mmol/l). The action of GLP-I(7-36)amide and forskolin involved a 10-fold increase in cytoplasmic cAMP concentration and was mediated by activation of protein kinase A. It was not associated with an effect on the membrane potential but required some (small) initial entry of Ca2+ through voltage-dependent L-type Ca2+ channels, which then produced a further increase in [Ca2+]i by mobilization from intracellular stores. The latter effect reflected Ca(2+)-induced Ca2+ release and was blocked by ryanodine. Similar increases in [Ca2+]i were also observed in voltage-clamped cells, although there was neither activation of a background (Ca(2+)-permeable) inward current nor enhancement of the voltage-dependent L-type Ca2+ current. These observations are consistent with GLP-I(7-36) amide inducing glucose sensitivity by promoting mobilization of Ca2+ from intracellular stores. We propose that this novel action of GLP-I(7-36)amide represents an important factor contributing to its insulinotropic action.
  •  
4.
  • Ivarsson, Rosita, et al. (författare)
  • Redox control of exocytosis - Regulatory role of NADPH, thioredoxin, and glutaredoxin
  • 2005
  • Ingår i: Diabetes. - 1939-327X. ; 54:7, s. 2132-2142
  • Tidskriftsartikel (refereegranskat)abstract
    • Cellular redox state is an important metabolic variable, influencing many aspects of cell function like growth, apoptosis, and reductive biosynthesis. In this report, we identify NADPH as a candidate signaling molecule for exocytosis in neuroendocrine cells. In pancreatic beta-cells, glucose acutely raised the NADPH-to-NADP(+) ratio and stimulated insulin release in parallel. Furthermore, intracellular addition of NADPH directly stimulated exocytosis of insulin granules. Effects of NADPH on exocytosis are proposed to be mediated by the redox proteins glutaredoxin (GRX) and thioredoxin (TRX) on the basis of the following evidence: 1) Expression of GRX mRNA is very high in beta-cells compared with other studied tissues, and GRX protein expression is high in islets and in brain; 2) GRX and TRX are localized in distinct microdomains in the cytosol of beta-cells; and 3) microinjection of recombinant GRX potentiated effects of NADPH on exocytosis, whereas TRX antagonized the NADPH effect. We propose that the NADPEVGRX/ TRX redox regulation mediates a novel signaling pathway of nutrient-induced insulin secretion.
  •  
5.
  • Jonsson, Anna, et al. (författare)
  • Effect of Common Genetic Variants Associated with Type 2 Diabetes and Glycemic Traits on α- and β-cell Function and Insulin Action in Man.
  • 2013
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 62:8, s. 2978-2983
  • Tidskriftsartikel (refereegranskat)abstract
    • Although meta-analyses of genome-wide association studies have identified more than 60 single nucleotide polymorphisms (SNPs) associated with type 2 diabetes and/or glycemic traits, there is little information whether these variants also affect α-cell function. The aim of the present study was to evaluate the effects of glycemia-associated genetic loci on islet function in vivo and in vitro. We studied 43 SNPs in 4,654 normoglycemic participants from the Finnish population-based PPP-Botnia study. Islet function was assessed, in vivo, by measuring insulin and glucagon concentrations during OGTT, and, in vitro, by measuring glucose stimulated insulin and glucagon secretion from human pancreatic islets. Carriers of risk variants in BCL11A, HHEX, ZBED3, HNF1A, IGF1 and NOTCH2 showed elevated, while those in CRY2, IGF2BP2, TSPAN8 and KCNJ11 decreased fasting and/or 2hr glucagon concentrations in vivo. Variants in BCL11A, TSPAN8, and NOTCH2 affected glucagon secretion both in vivo and in vitro. The MTNR1B variant was a clear outlier in the relationship analysis between insulin secretion and action, as well as between insulin, glucose and glucagon. Many of the genetic variants shown to be associated with type 2 diabetes or glycemic traits also exert pleiotropic in vivo and in vitro effects on islet function.
  •  
6.
  • Mastrolia, Vincenzo, et al. (författare)
  • Loss of a2d-1 calcium channel subunit function increases the susceptibility for diabetes
  • 2017
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 66:4, s. 897-907
  • Tidskriftsartikel (refereegranskat)abstract
    • Reduced pancreatic b-cell function or mass is the critical problem in developing diabetes. Insulin release from b-cells depends on Ca2+ influx through high voltage- gated Ca2+ channels (HVCCs). Ca2+ influx also regulates insulin synthesis and insulin granule priming and contributes to β-cell electrical activity. The HVCCs aremultisubunit protein complexes composed of a pore-forming a1 and auxiliary β and α2δ subunits. α2δ is a key regulator of membrane incorporation and function of HVCCs. Here we show that genetic deletion of α2δ-1, the dominant α 2δ subunit in pancreatic islets, results in glucose intolerance and diabetes without affecting insulin sensitivity. Lack of the α 2δ-1 subunit reduces the Ca2+ currents through all HVCC isoforms expressed in b-cells equally in male and female mice. The reduced Ca2+ influx alters the kinetics and amplitude of the global Ca2+ response to glucose in pancreatic islets and significantly reduces insulin release in both sexes. The progression of diabetes in males is aggravated by a selective loss of b-cell mass, while a stronger basal insulin release alleviates the diabetes symptoms in most α2δ -1 2/2 female mice. Together, these findings demonstrate that the loss of the Ca2+ channel α2β-1 subunit function increases the susceptibility for developing diabetes in a sex-dependent manner.
  •  
7.
  • Renström, Erik, et al. (författare)
  • Sulfonylurea-Mediated Stimulation of Insulin Exocytosis via an ATP-Sensitive K(+) Channel--Independent Action.
  • 2002
  • Ingår i: Diabetes. - 1939-327X .- 0012-1797. ; 51:Suppl 1, s. 33-36
  • Tidskriftsartikel (refereegranskat)abstract
    • Several reports indicate that hypoglycemic sulfonylureas augment Ca(2+)-dependent insulin secretion via mechanisms other than inhibition of the ATP-sensitive K(+) channel. The effect involves a 65-kd protein in the granule membrane and culminates in intragranular acidification. Lowering of granule pH is necessary for the insulin granule to gain release competence. Proton pumping into the granule is driven by a v-type H(+)-ATPase, but requires simultaneous Cl(-) uptake into the granule via metabolically regulated ClC-3 Cl(-) channels to maintain electroneutrality. Here we discuss the possibility that modulation of granule ClC-3 channels represents the mechanism whereby sulfonylureas directly potentiate the beta-cell exocytotic machinery.
  •  
8.
  • Rosengren, Anders, et al. (författare)
  • Reduced Insulin Exocytosis in Human Pancreatic β-cells With Gene Variants Linked to Type 2 Diabetes.
  • 2012
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 61:7, s. 1726-1733
  • Tidskriftsartikel (refereegranskat)abstract
    • The majority of genetic risk variants for type 2 diabetes (T2D) affect insulin secretion, but the mechanisms through which they influence pancreatic islet function remain largely unknown. We functionally characterized human islets to determine secretory, biophysical, and ultrastructural features in relation to genetic risk profiles in diabetic and nondiabetic donors. Islets from donors with T2D exhibited impaired insulin secretion, which was more pronounced in lean than obese diabetic donors. We assessed the impact of 14 disease susceptibility variants on measures of glucose sensing, exocytosis, and structure. Variants near TCF7L2 and ADRA2A were associated with reduced glucose-induced insulin secretion, whereas susceptibility variants near ADRA2A, KCNJ11, KCNQ1, and TCF7L2 were associated with reduced depolarization-evoked insulin exocytosis. KCNQ1, ADRA2A, KCNJ11, HHEX/IDE, and SLC2A2 variants affected granule docking. We combined our results to create a novel genetic risk score for β-cell dysfunction that includes aberrant granule docking, decreased Ca(2+) sensitivity of exocytosis, and reduced insulin release. Individuals with a high risk score displayed an impaired response to intravenous glucose and deteriorating insulin secretion over time. Our results underscore the importance of defects in β-cell exocytosis in T2D and demonstrate the potential of cellular phenotypic characterization in the elucidation of complex genetic disorders.
  •  
9.
  • Taneera, Jalal, et al. (författare)
  • Failure of Transplanted Bone Marrow Cells to Adopt a Pancreatic β-Cell Fate
  • 2006
  • Ingår i: Diabetes. - Alexandria, USA : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 55:2, s. 290-296
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent studies in normal mice have suggested that transplanted bone marrow cells can transdifferentiate into pancreatic beta-cells at relatively high efficiency. Herein, adopting the same and alternative approaches to deliver and fate map-transplanted bone marrow cells in the pancreas of normal as well as diabetic mice, we further investigated the potential of bone marrow transplantation as an alternative approach for beta-cell replacement. In contrast to previous studies, transplanted bone marrow cells expressing green fluorescence protein (GFP) under the control of the mouse insulin promoter failed to express GFP in the pancreas of normal as well as diabetic mice. Although bone marrow cells expressing GFP under the ubiquitously expressed beta-actin promoter efficiently engrafted the pancreas of normal and hyperglycemic mice, virtually all expressed CD45 and Mac-1/Gr-1, demonstrating that they adopt a hematopoietic rather than beta-cell fate, a finding further substantiated by the complete absence of GFP(+) cells expressing insulin and the beta-cell transcription factors pancreatic duodenal homeobox factor-1 and homeodomain protein. Thus, transplanted bone marrow cells demonstrated little, if any, capacity to adopt a beta-cell fate.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy