SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "L773:1939 327X ;pers:(Ryden M)"

Search: L773:1939 327X > Ryden M

  • Result 1-10 of 15
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Andersson, DP, et al. (author)
  • Relationship Between a Sedentary Lifestyle and Adipose Insulin Resistance
  • 2023
  • In: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 72:3, s. 316-325
  • Journal article (peer-reviewed)abstract
    • Sedentary people have insulin resistance in their skeletal muscle, but whether this also occurs in fat cells was unknown. Insulin inhibition of hydrolysis of triglycerides (antilipolysis) and stimulation of triglyceride formation (lipogenesis) were investigated in subcutaneous fat cells from 204 sedentary and 336 physically active subjects. Insulin responsiveness (maximum hormone effect) and sensitivity (half-maximal effective concentration) were determined. In 69 women, hyperinsulinemia-induced circulating fatty acid levels were measured. In 128 women, adipose gene expression was analyzed. Responsiveness of insulin for antilipolysis (60% inhibition) and lipogenesis (twofold stimulation) were similar between sedentary and active subjects. Sensitivity for both measures decreased ˜10-fold in sedentary subjects (P < 0.01). However, upon multiple regression analysis, only the association between antilipolysis sensitivity and physical activity remained significant when adjusting for BMI, age, sex, waist-to-hip ratio, fat-cell size, and cardiometabolic disorders. Fatty acid levels decreased following hyperinsulinemia but remained higher in sedentary compared with active women (P = 0.01). mRNA expression of insulin receptor and its substrates 1 and 2 was decreased in sedentary subjects. In conclusion, while the maximum effect is preserved, sensitivity to insulin’s antilipolytic effect in subcutaneous fat cells is selectively lower in sedentary subjects.
  •  
2.
  • Andersson, DP, et al. (author)
  • Relationship Between a Sedentary Lifestyle and Adipose Insulin Resistance
  • 2023
  • In: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 72:3, s. 316-325
  • Journal article (peer-reviewed)abstract
    • Sedentary people have insulin resistance in their skeletal muscle, but whether this also occurs in fat cells was unknown. Insulin inhibition of hydrolysis of triglycerides (antilipolysis) and stimulation of triglyceride formation (lipogenesis) were investigated in subcutaneous fat cells from 204 sedentary and 336 physically active subjects. Insulin responsiveness (maximum hormone effect) and sensitivity (half-maximal effective concentration) were determined. In 69 women, hyperinsulinemia-induced circulating fatty acid levels were measured. In 128 women, adipose gene expression was analyzed. Responsiveness of insulin for antilipolysis (60% inhibition) and lipogenesis (twofold stimulation) were similar between sedentary and active subjects. Sensitivity for both measures decreased ˜10-fold in sedentary subjects (P < 0.01). However, upon multiple regression analysis, only the association between antilipolysis sensitivity and physical activity remained significant when adjusting for BMI, age, sex, waist-to-hip ratio, fat-cell size, and cardiometabolic disorders. Fatty acid levels decreased following hyperinsulinemia but remained higher in sedentary compared with active women (P = 0.01). mRNA expression of insulin receptor and its substrates 1 and 2 was decreased in sedentary subjects. In conclusion, while the maximum effect is preserved, sensitivity to insulin’s antilipolytic effect in subcutaneous fat cells is selectively lower in sedentary subjects.
  •  
3.
  • Dahlman, I, et al. (author)
  • Numerous Genes in Loci Associated With Body Fat Distribution Are Linked to Adipose Function
  • 2016
  • In: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 65:2, s. 433-437
  • Journal article (peer-reviewed)abstract
    • Central fat accumulation is a strong risk factor for type 2 diabetes. Genome-wide association studies have identified numerous loci associated with body fat distribution. The objectives of the current study are to examine whether genes in genetic loci linked to fat distribution can be linked to fat cell size and number (morphology) and/or adipose tissue function. We show, in a cohort of 114 women, that almost half of the 96 genes in these loci are indeed associated with abdominal subcutaneous adipose tissue parameters. Thus, adipose mRNA expression of the genes is strongly related to adipose morphology, catecholamine-induced lipid mobilization (lipolysis), or insulin-stimulated lipid synthesis in adipocytes (lipogenesis). In conclusion, the genetic influence on body fat distribution could be mediated via several specific alterations in adipose tissue morphology and function, which in turn may influence the development of type 2 diabetes.
  •  
4.
  • Dollet, L, et al. (author)
  • Glutamine Regulates Skeletal Muscle Immunometabolism in Type 2 Diabetes
  • 2022
  • In: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 71:4, s. 624-636
  • Journal article (peer-reviewed)abstract
    • Dysregulation of skeletal muscle metabolism influences whole-body insulin sensitivity and glucose homeostasis. We hypothesized that type 2 diabetes–associated alterations in the plasma metabolome directly contribute to skeletal muscle immunometabolism and the subsequent development of insulin resistance. To this end, we analyzed the plasma and skeletal muscle metabolite profile and identified glutamine as a key amino acid that correlates inversely with BMI and insulin resistance index (HOMA-IR) in men with normal glucose tolerance or type 2 diabetes. Using an in vitro model of human myotubes and an in vivo model of diet-induced obesity and insulin resistance in male mice, we provide evidence that glutamine levels directly influence the inflammatory response of skeletal muscle and regulate the expression of the adaptor protein GRB10, an inhibitor of insulin signaling. Moreover, we demonstrate that a systemic increase in glutamine levels in a mouse model of obesity improves insulin sensitivity and restores glucose homeostasis. We conclude that glutamine supplementation may represent a potential therapeutic strategy to prevent or delay the onset of insulin resistance in obesity by reducing inflammatory markers and promoting skeletal muscle insulin sensitivity.
  •  
5.
  • Ehrlund, A, et al. (author)
  • Transcriptional Dynamics During Human Adipogenesis and Its Link to Adipose Morphology and Distribution
  • 2017
  • In: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 66:1, s. 218-230
  • Journal article (peer-reviewed)abstract
    • White adipose tissue (WAT) can develop into several phenotypes with different pathophysiological impact on type 2 diabetes. To better understand the adipogenic process, the transcriptional events that occur during in vitro differentiation of human adipocytes were investigated and the findings linked to WAT phenotypes. Single-molecule transcriptional profiling provided a detailed map of the expressional changes of genes, enhancers, and long noncoding RNAs, where different types of transcripts share common dynamics during differentiation. Common signatures include early downregulated, transient, and late induced transcripts, all of which are linked to distinct developmental processes during adipogenesis. Enhancers expressed during adipogenesis overlap significantly with genetic variants associated with WAT distribution. Transiently expressed and late induced genes are associated with hypertrophic WAT (few but large fat cells), a phenotype closely linked to insulin resistance and type 2 diabetes. Transcription factors that are expressed early or transiently affect differentiation and adipocyte function and are controlled by several well-known upstream regulators such as glucocorticosteroids, insulin, cAMP, and thyroid hormones. Taken together, our results suggest a complex but highly coordinated regulation of adipogenesis.
  •  
6.
  • Ek, I, et al. (author)
  • A unique defect in the regulation of visceral fat cell lipolysis in the polycystic ovary syndrome as an early link to insulin resistance
  • 2002
  • In: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 51:2, s. 484-492
  • Journal article (peer-reviewed)abstract
    • The etiology of polycystic ovary syndrome (PCOS) is unknown. However, PCOS has a strong resemblance to the insulin resistance (metabolic) syndrome, where an increased rate of visceral fat cell lipolysis is believed to play a pathophysiological role. We hypothesized that primary defects in visceral lipolysis might also exist in PCOS. Ten young, nonobese, and otherwise healthy PCOS women were compared with 13 matched control women. In vitro lipolysis regulation and stoichiometric properties of the final step in lipolysis activation, namely the protein kinase A (PKA)-hormone sensitive lipase (HSL) complex, were investigated in isolated visceral (i.e., omental) fat cells. Body fat distribution and circulating levels of insulin, glucose, and lipids were normal in PCOS women. However, in vivo insulin sensitivity was slightly decreased (P = 0.03). Catecholamine-induced adipocyte lipolysis was markedly (i.e., about twofold) increased in PCOS women due to changes at the postreceptor level, although there was no change in the antilipolytic properties of visceral fat cells. Western blot analyses of visceral adipose tissue showed twofold increased levels of the catalytic and the regulatory la components of PKA. In contrast, the regulatory RIIbeta component of PKA was almost 50% decreased in visceral adipose tissue in PCOS women. Recent studies on genetically modified mice have shown that a similar transition in the regulatory PKA units induces an increased lipolytic response to catecholamines. Further analysis showed that the level of HSL-short, an enzymatically inactive splice form of HSL, was decreased in PCOS (P < 0.01). The altered lipolysis in PCOS is different from that observed in visceral fat cells in the insulin resistance syndrome that occurs at the level of adrenergic receptors. We concluded that increased catecholamine-induced lipolysis in visceral fat cells may be due to unique alterations in the stoichiometric properties of the adipose PKA-HSL holoenzymes. This could be an early and possibly primary lipolysis defect in PCOS.
  •  
7.
  • Hagstrom-Toft, E, et al. (author)
  • Marked heterogeneity of human skeletal muscle lipolysis at rest
  • 2002
  • In: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 51:12, s. 3376-3383
  • Journal article (peer-reviewed)abstract
    • In this study, variations in lipolysis among different muscle groups were examined by measuring local net glycerol release in vivo in healthy, normal-weight subjects (n = 11) during rested, postabsorptive conditions. Microdialysis of the gastrocnemius, deltoid, and vastus lateralis muscle regions revealed that extracellular glycerol concentrations of these three muscle regions were 84.7 ± 6.7, 59.7 + 7.3, and 56.4 ± 7.5 μmol/l, respectively, and the arterial plasma glycerol concentration was 44.8 ± 2.3 μmol/l (P = 0.0003–0.006, gastrocnemius vs. others). Local tissue blood flow, as measured by Xe clearance, did not differ among the regions. Net glycerol release was significantly higher in gastrocnemius muscle than in the two other regions. There were no regional differences in glycerol uptake when studied during glycerol infusion. Gastrocnemius muscle showed a dominance of type 1 fibers (70%), whereas the vastus lateralis muscle had equal distribution of fiber types (P = 0.02). No differences in intramuscular triaclyceride content, perimuscular fat, or the adipocyte-specific protein perilipin were observed among the muscle regions. Triglyceride turnover in the gastrocnemius muscle was 3.3 + 1.4% over 24 h, which is about 10 times more rapid than the turnover rate in subcutaneous adipose tissue (P &lt; 0.01). Thus there were marked differences in lipolytic activity among skeletal muscle groups at rest, possibly reflecting variations in fiber type.
  •  
8.
  • Jersin, R. A., et al. (author)
  • Role of the Neutral Amino Acid Transporter SLC7A10 in Adipocyte Lipid Storage, Obesity, and Insulin Resistance
  • 2021
  • In: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 70:3, s. 680-695
  • Journal article (peer-reviewed)abstract
    • Elucidation of mechanisms that govern lipid storage, oxidative stress, and insulin resistance may lead to improved therapeutic options for type 2 diabetes and other obesity-related diseases. Here, we find that adipose expression of the small neutral amino acid transporter SLC7A10, also known as alanine-serine-cysteine transporter-1 (ASC-1), shows strong inverse correlates with visceral adiposity, insulin resistance, and adipocyte hypertrophy across multiple cohorts. Concordantly, loss of Slc7a10 function in zebrafish in vivo accelerates diet-induced body weight gain and adipocyte enlargement. Mechanistically, SLC7A10 inhibition in human and murine adipocytes decreases adipocyte serine uptake and total glutathione levels and promotes reactive oxygen species (ROS) generation. Conversely, SLC7A10 overexpression decreases ROS generation and increases mitochondrial respiratory capacity. RNA sequencing revealed consistent changes in gene expression between human adipocytes and zebrafish visceral adipose tissue following loss of SLC7A10, e.g., upregulation of SCD (lipid storage) and downregulation of CPT1A (lipid oxidation). Interestingly, ROS scavenger reduced lipid accumulation and attenuated the lipid-storing effect of SLC7A10 inhibition. These data uncover adipocyte SLC7A10 as a novel important regulator of adipocyte resilience to nutrient and oxidative stress, in part by enhancing glutathione levels and mitochondrial respiration, conducive to decreased ROS generation, lipid accumulation, adipocyte hypertrophy, insulin resistance, and type 2 diabetes.
  •  
9.
  • Kulyte, A, et al. (author)
  • Additive effects of microRNAs and transcription factors on CCL2 production in human white adipose tissue
  • 2014
  • In: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 63:4, s. 1248-1258
  • Journal article (peer-reviewed)abstract
    • Adipose tissue inflammation is present in insulin-resistant conditions. We recently proposed a network of microRNAs (miRNAs) and transcription factors (TFs) regulating the production of the proinflammatory chemokine (C-C motif) ligand-2 (CCL2) in adipose tissue. We presently extended and further validated this network and investigated if the circuits controlling CCL2 can interact in human adipocytes and macrophages. The updated subnetwork predicted that miR-126/-193b/-92a control CCL2 production by several TFs, including v-ets erythroblastosis virus E26 oncogene homolog 1 (avian) (ETS1), MYC-associated factor X (MAX), and specificity protein 12 (SP1). This was confirmed in human adipocytes by the observation that gene silencing of ETS1, MAX, or SP1 attenuated CCL2 production. Combined gene silencing of ETS1 and MAX resulted in an additive reduction in CCL2 production. Moreover, overexpression of miR-126/-193b/-92a in different pairwise combinations reduced CCL2 secretion more efficiently than either miRNA alone. However, although effects on CCL2 secretion by co-overexpression of miR-92a/-193b and miR-92a/-126 were additive in adipocytes, the combination of miR-126/-193b was primarily additive in macrophages. Signals for miR-92a and -193b converged on the nuclear factor-κB pathway. In conclusion, TF and miRNA-mediated regulation of CCL2 production is additive and partly relayed by cell-specific networks in human adipose tissue that may be important for the development of insulin resistance/type 2 diabetes.
  •  
10.
  • Langin, D, et al. (author)
  • Adipocyte lipases and defect of lipolysis in human obesity
  • 2005
  • In: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 54:11, s. 3190-3197
  • Journal article (peer-reviewed)abstract
    • The mobilization of fat stored in adipose tissue is mediated by hormone-sensitive lipase (HSL) and the recently characterized adipose triglyceride lipase (ATGL), yet their relative importance in lipolysis is unknown. We show that a novel potent inhibitor of HSL does not inhibit other lipases. The compound counteracted catecholamine-stimulated lipolysis in mouse adipocytes and had no effect on residual triglyceride hydrolysis and lipolysis in HSL-null mice. In human adipocytes, catecholamine- and natriuretic peptide-induced lipolysis were completely blunted by the HSL inhibitor. When fat cells were not stimulated, glycerol but not fatty acid release was inhibited. HSL and ATGL mRNA levels increased concomitantly during adipocyte differentiation. Abundance of the two transcripts in human adipose tissue was highly correlated in habitual dietary conditions and during a hypocaloric diet, suggesting common regulatory mechanisms for the two genes. Comparison of obese and nonobese subjects showed that obesity was associated with a decrease in catecholamine-induced lipolysis and HSL expression in mature fat cells and in differentiated preadipocytes. In conclusion, HSL is the major lipase for catecholamine- and natriuretic peptide-stimulated lipolysis, whereas ATGL mediates the hydrolysis of triglycerides during basal lipolysis. Decreased catecholamine-induced lipolysis and low HSL expression constitute a possibly primary defect in obesity.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view