SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1939 327X ;pers:(Salehi S Albert)"

Sökning: L773:1939 327X > Salehi S Albert

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alonso-Magdalena, Paloma, et al. (författare)
  • Antidiabetic Actions of an Estrogen Receptor beta Selective Agonist
  • 2013
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 62:6, s. 2015-2025
  • Tidskriftsartikel (refereegranskat)abstract
    • The estrogen receptor beta (ER beta) is emerging as an important player in the physiology of the endocrine pancreas. We evaluated the role and antidiabetic actions of the ER beta selective agonist WAY200070 as an insulinotropic molecule. We demonstrate that WAY200070 enhances glucose-stimulated insulin secretion both in mouse and human islets. In vivo experiments showed that a single administration of WAY200070 leads to an increase in plasma insulin levels with a concomitant improved response to a glucose load. Two-week treatment administration increased glucose-induced insulin release and pancreatic beta-cell mass and improved glucose and insulin sensitivity. In addition, streptozotocin-nicotinamide-induced diabetic mice treated with WAY200070 exhibited a significant improvement in plasma insulin levels and glucose tolerance as well as a regeneration of pancreatic beta-cell mass. Studies performed in db/db mice demonstrated that this compound restored first-phase insulin secretion and enhanced pancreatic beta-cell mass. We conclude that ER beta agonists should be considered as new targets for the treatment of diabetes.
  •  
2.
  • Jonsson, Anna, et al. (författare)
  • A variant in the KCNQ1 gene predicts future type 2 diabetes and mediates impaired insulin secretion.
  • 2009
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 58:10, s. 2409-2413
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective- Two independent genome wide association studies for type 2 diabetes in Japanese have recently identified common variants in the KCNQ1 gene to be strongly associated with type 2 diabetes. Here we studied whether a common variant in KCNQ1 would influence BMI, insulin secretion and action and predict future type 2 diabetes in subjects from Sweden and Finland. Research design and methods- Risk of type 2 diabetes conferred by KCNQ1 rs2237895 was studied in 2,830 type 2 diabetes cases and 3,550 controls from Sweden (Malmö Case-Control) and prospectively in 16,061 individuals from the Malmö Preventive Project (MPP). Association between genotype and insulin secretion/action was assessed cross-sectionally in 3,298 non-diabetic subjects from the PPP-Botnia Study and longitudinally in 2,328 non-diabetic subjects from the Botnia Prospective Study (BPS). KCNQ1 expression (n=18) and glucose-stimulated insulin secretion (n=19) was measured in human islets from non-diabetic cadaver donors. Results. The C-allele of KCNQ1 rs2237895 was associated with increased risk of type 2 diabetes in both the case-control (OR 1.23 [1.12-1.34], p=5.6x10(-6)) and the prospective (OR 1.14 [1.06-1.22], p=4.8x10(-4)) studies. Furthermore, the C-allele was associated with decreased insulin secretion (CIR p=0.013; DI p=0.013) in the PPP-Botnia study and in the BPS at baseline (CIR p=3.6x10(-4); DI p=0.0058) and after follow-up (CIR p=0.0018; DI p=0.0030). C-allele carriers showed reduced glucose-stimulated insulin secretion in human islets (p=2.5x10(-6)). Conclusion. A common variant in the KCNQ1 gene is associated with increased risk of future type 2 diabetes in Scandinavians which partially can be explained by an effect on insulin secretion.
  •  
3.
  • Lyssenko, Valeriya, et al. (författare)
  • Pleiotropic Effects of GIP on Islet Function Involve Osteopontin
  • 2011
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 60:9, s. 2424-2433
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE-The incretin hormone GIP (glucose-dependent insulinotropic polypeptide) promotes pancreatic beta-cell function by potentiating insulin secretion and beta-cell proliferation. Recently, a combined analysis of several genome-wide association studies (Meta-analysis of Glucose and Insulin-Related Traits Consortium [MAGIC]) showed association to postprandial insulin at the GIP receptor (GIPR) locus. Here we explored mechanisms that could explain the protective effects of GIP on islet function. RESEARCH DESIGN AND METHODS-Associations of GIPR rs10423928 with metabolic and anthropometric phenotypes in both nondiabetic (N = 53,730) and type 2 diabetic individuals (N = 2,731) were explored by combining data from 11 studies.Insulin secretion was measured both in vivo in nondiabetic subjects and in vitro in islets from cadaver donors. Insulin secretion was also measured in response to exogenous GIP. The in vitro measurements included protein and gene expression as well as measurements of beta-cell viability and proliferation. RESULTS-The A allele of GIPR rs10423928 was associated with impaired glucose- and GIP-stimulated insulin secretion and a decrease in BMI, lean body mass, and waist circumference. The decrease in BMI almost completely neutralized the effect of impaired insulin secretion on risk of type 2 diabetes. Expression of GIPR mRNA was decreased in human islets from carriers of the A allele or patients with type 2 diabetes. GIP stimulated osteopontin (OPN) mRNA and protein expression. OPN expression was lower in carriers of the A allele. Both GIP and OPN prevented cytokine-induced reduction in cell viability (apoptosis). In addition, OPN stimulated cell proliferation in insulin-secreting cells. CONCLUSIONS-These findings support beta-cell proliferative and antiapoptotic roles for GIP in addition to its action as an incretin hormone. Identification of a link between GIP and OPN may shed new light on the role of GIP in preservation of functional beta-cell mass in humans. Diabetes 60:2424-2433, 2011
  •  
4.
  • Olofsson, Charlotta, et al. (författare)
  • Long-term exposure to glucose and lipids inhibits glucose-induced insulin secretion downstream of granule fusion with plasma membrane.
  • 2007
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 56:7, s. 1888-1897
  • Tidskriftsartikel (refereegranskat)abstract
    • Mouse beta-cells cultured at 15 mmol/l glucose for 72 h had reduced ATP-sensitive K+ (K-ATP) channel activity (-30%), increased voltage-gated Ca2+ currents, higher intracellular free Ca2+ concentration ([Ca-i(2+]) +160%), more exocytosis (monitored by capacitance measurements, +100%), and greater insulin content (+230%) than those cultured at 4.5 mmol/l glucose. However, they released 20% less insulin when challenged with 20 mmol/l glucose. Glucose-induced (20 mmol/l) insulin secretion was reduced by 60-90% in islets cocultured at 4.5 or 15 mmol/l glucose and either oleate or palmitate (0.5 mmol/l). Free fatty acid (FFA)induced inhibition of secretion was not associated with any major changes in [Ca2+](i) or islet ATP content. Palmitate stimulated exocytosis by twofold or more but reduced V-induced secretion by up to 60%. Basal (1 mmol/l glucose) K-ATP channel activity was 40% lower in islets cultured at 4.5 mmol/l glucose plus palmitate and 60% lower in islets cultured at 15 mmol/l glucose plus either of the FFAs. Insulin content decreased by 75% in islets exposed to FFAs in the presence of high (15 mmol/l), but not low (4.5 mmol/l), glucose concentrations, but the number of secre tory granules was unchanged. FFA-induced inhibition of insulin secretion was not associated with increased tran script levels of the apoptosis markers Bax (BclII-associated X protein) and caspase-3. We conclude that glucose and FFAs reduce insulin secretion by interference with the exit of insulin via the fusion pore.
  •  
5.
  • Rosengren, Anders, et al. (författare)
  • Reduced Insulin Exocytosis in Human Pancreatic β-cells With Gene Variants Linked to Type 2 Diabetes.
  • 2012
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 61:7, s. 1726-1733
  • Tidskriftsartikel (refereegranskat)abstract
    • The majority of genetic risk variants for type 2 diabetes (T2D) affect insulin secretion, but the mechanisms through which they influence pancreatic islet function remain largely unknown. We functionally characterized human islets to determine secretory, biophysical, and ultrastructural features in relation to genetic risk profiles in diabetic and nondiabetic donors. Islets from donors with T2D exhibited impaired insulin secretion, which was more pronounced in lean than obese diabetic donors. We assessed the impact of 14 disease susceptibility variants on measures of glucose sensing, exocytosis, and structure. Variants near TCF7L2 and ADRA2A were associated with reduced glucose-induced insulin secretion, whereas susceptibility variants near ADRA2A, KCNJ11, KCNQ1, and TCF7L2 were associated with reduced depolarization-evoked insulin exocytosis. KCNQ1, ADRA2A, KCNJ11, HHEX/IDE, and SLC2A2 variants affected granule docking. We combined our results to create a novel genetic risk score for β-cell dysfunction that includes aberrant granule docking, decreased Ca(2+) sensitivity of exocytosis, and reduced insulin release. Individuals with a high risk score displayed an impaired response to intravenous glucose and deteriorating insulin secretion over time. Our results underscore the importance of defects in β-cell exocytosis in T2D and demonstrate the potential of cellular phenotypic characterization in the elucidation of complex genetic disorders.
  •  
6.
  •  
7.
  • Salehi, S Albert, et al. (författare)
  • Paradoxical stimulation of glucagon secretion by high glucose concentrations
  • 2006
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 55:8, s. 2318-2323
  • Tidskriftsartikel (refereegranskat)abstract
    • Hypersecretion of glucagon contributes to the dysregulation of glucose homeostasis in diabetes. To clarify the underlying mechanism, glucose-regulated glucagon secretion was studied in mouse pancreatic islets and clonal hamster In-R1-G9 glucagon-releasing cells. Apart from the well-known inhibition of secretion with maximal effect around 7 mmol/l glucose, we discovered that mouse islets showed paradoxical stimulation of glucagon release at 25-30 mmol/l and In-R1-G9 cells at 12-20 mmol/l sugar. Whereas glucagon secretion in the absence of glucose was inhibited by hyperpolarization with diazoxide, this agent tended to further enhance secretion stimulated by high concentrations of the sugar. Because U-shaped dose-response relationships for glucose-regulated glucagon secretion were observed in normal islets and in clonal glucagon-releasing cells, both the inhibitory and stimulatory components probably reflect direct effects on the a-cells. Studies of isolated mouse a-cells indicated that glucose inhibited glucagon secretion by lowering the cytoplasmic Ca2+ concentration. However, stimulation of glucagon release by high glucose concentrations did not require elevation of Ca2+, indicating involvement of novel mechanisms in glucose regulation of glucagon secretion. A U-shaped dose-response relationship for glucose-regulated glucagon secretion may explain why diabetic patients with pronounced hyperglycemia display paradoxical hyperglucagonemia.
  •  
8.
  • Salehi, S Albert, et al. (författare)
  • The pseudotetrasaccharide acarbose inhibits pancreatic islet glucan-1,4-alpha-glucosidase activity in parallel with a suppressive action on glucose-induced insulin release
  • 1995
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 44:7, s. 830-836
  • Tidskriftsartikel (refereegranskat)abstract
    • The pseudotetrasaccharide acarbose, previously known as a potent inhibitor of intestinal alpha-glucoside hydrolases, was investigated with regard to its influence on islet lysosomal enzyme activities and the insulin secretory processes. We observed that acarbose was a potent inhibitor of mouse islet lysosomal acid glucan-1,4-alpha-glucosidase activity, EC50 approximately 5 mumol/l, as well as of acid alpha-glucosidase activity. In contrast, acarbose did not influence other lysosomal enzyme activities such as acid phosphatase and N-acetyl-beta-D-glucosaminidase. Neutral alpha-glucosidase (endoplasmic reticulum) was only moderately inhibited in homogenate and was unaffected in intact islets. Incubation of isolated mouse islets with acarbose revealed that the pseudotetrasaccharide was a strong inhibitor of glucose-induced insulin secretion, EC50 approximately 500 nmol/l, and a significant inhibition was already observed at a concentration of acarbose as low as 100 nmol/l. The acarbose analogue maltotetrose did not influence either glucose-induced insulin release or islet lysosomal enzyme activities. Further, acarbose as well as two other alpha-glucoside hydrolase inhibitors, the deoxynojirimycin derivatives miglitol and emiglitate, did not affect islet glucose oxidation at low or high glucose levels. Acarbose also inhibited insulin release induced by the sulfonylurea glibenclamide, whereas insulin secretion stimulated by the cholinergic muscarinic agonist carbachol or the phosphodiesterase inhibitor isobutylmethylxanthine was unaffected by the drug. Moreover, complementary in vivo experiments showed that pretreatment of mice with acarbose to allow for endocytosis of the compound markedly suppressed the insulin secretory response to an intravenous glucose load.(ABSTRACT TRUNCATED AT 250 WORDS)
  •  
9.
  • Wendt, Anna, et al. (författare)
  • Glucose Inhibition of Glucagon Secretion From Rat alpha-Cells Is Mediated by GABA Released From Neighboring beta-Cells.
  • 2004
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 53:4, s. 1038-1045
  • Tidskriftsartikel (refereegranskat)abstract
    • γ-Aminobutyric acid (GABA) has been proposed to function as a paracrine signaling molecule in islets of Langerhans. We have shown that rat β-cells release GABA by Ca2+-dependent exocytosis of synaptic-like microvesicles. Here we demonstrate that GABA thus released can diffuse over sufficient distances within the islet interstitium to activate GABAA receptors in neighboring cells. Confocal immunocytochemistry revealed the presence of GABAA receptors in glucagon-secreting α-cells but not in β- and δ-cells. RT-PCR analysis detected transcripts of α1 and α4 as well as β1–3 GABAA receptor subunits in purified α-cells but not in β-cells. In whole-cell voltage-clamp recordings, exogenous application of GABA activated Cl− currents in α-cells. The GABAA receptor antagonist SR95531 was used to investigate the effects of endogenous GABA (released from β-cells) on pancreatic islet hormone secretion. The antagonist increased glucagon secretion at 1 mmol/l glucose twofold and completely abolished the inhibitory action of 20 mmol/l glucose on glucagon release. Basal and glucose-stimulated secretion of insulin and somatostatin were unaffected by SR95531. The L-type Ca2+ channel blocker isradipine evoked a paradoxical stimulation of glucagon secretion. This effect was not observed in the presence of SR95531, and we therefore conclude that isradipine stimulates glucagon secretion by inhibition of GABA release.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy