SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1939 327X OR L773:0012 1797 ;pers:(OSTENSON CG)"

Sökning: L773:1939 327X OR L773:0012 1797 > OSTENSON CG

  • Resultat 1-10 av 25
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bavenholm, PN, et al. (författare)
  • Insulin sensitivity of suppression of endogenous glucose production is the single most important determinant of glucose tolerance
  • 2001
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 50:6, s. 1449-1454
  • Tidskriftsartikel (refereegranskat)abstract
    • Hyperglycemia results from an imbalance between endocrine pancreatic function and hepatic and extrahepatic insulin sensitivity. We studied 57 well-matched Swedish men with normal glucose tolerance (NGT), impaired glucose tolerance (IGT), or mild diabetes. Oral glucose tolerance and insulin release were assessed during an oral glucose tolerance test (OGTT). Insulin sensitivity and glucose turnover were determined during a two-step euglycemic insulin clamp (infusion 0.25 and 1.0 mU · kg–1 · min–1). High-performance liquid chromatography–purified [6-3H]glucose was used as a tracer. During low-insulin infusion, the rate of endogenous glucose production (EGP) decreased more in subjects with NGT than in subjects with IGT or diabetes (δ rate of appearance [Ra] 1.25 ± 0.10 vs. 0.75 ± 0.14 vs. 0.58 ± 0.09 mg · kg–1 · min–1, P < 0.001). The corresponding rates of glucose infusion during the high-dose insulin infusion (M values) were 8.3 ± 0.6 vs. 5.4 ± 0.9 vs. 4.7 ± 0.4 mg · kg–1 · min–1 (P < 0.001). A total of 56% of the variation in glucose area under the curve (AUC) during OGTT (glucose AUC) was mainly explained by δ Ra (increase in multiple R2 0.42) but also by δ Rd (rate of disapperance) (increase in multiple R2 0.05), and the early insulin response during OGTT contributed significantly (increase in multiple R2 0.07). When M value was included in the model, reflecting extrahepatic insulin sensitivity, it contributed to 20% of the variation in glucose AUC, and together with the incremental insulin response (increase in multiple R2 0.21), it explained 45% of the variation. In conclusion, insulin sensitivity of suppression of EGP plays the most important role in the determination of blood glucose response during OGTT.
  •  
2.
  • Davani, B, et al. (författare)
  • Aged transgenic mice with increased glucocorticoid sensitivity in pancreatic beta-cells develop diabetes
  • 2004
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 5353 Suppl 1, s. S51-S59
  • Tidskriftsartikel (refereegranskat)abstract
    • Glucocorticoids are diabetogenic hormones because they decrease glucose uptake, increase hepatic glucose production, and inhibit insulin release. To study the long-term effects of increased glucocorticoid sensitivity in β-cells, we studied transgenic mice overexpressing the rat glucocorticoid receptor targeted to the β-cells using the rat insulin I promoter. Here we report that these mice developed hyperglycemia both in the fed and the overnight-fasted states at 12–15 months of age. Progression from impaired glucose tolerance, previously observed in the same colony at the age of 3 months, to manifest diabetes was not associated with morphological changes or increased apoptosis in the β-cells. Instead, our current results suggest that the development of diabetes is due to augmented inhibition of insulin secretion through α2-adrenergic receptors (α2-ARs). Thus, we found a significantly higher density of α2-ARs in the islets of transgenic mice compared with controls, based on binding studies with the α2-AR agonist UK 14304. Furthermore, incubation of islets with benextramine, a selective antagonist of the α2-AR, restored insulin secretion in response to glucose in isolated islets from transgenic mice, whereas it had no effect on control islets. These results indicate that the chronic enhancement of glucocorticoid signaling in pancreatic β-cells results in hyperglycemia and impaired glucose tolerance. This effect may involve signaling pathways that participate in the regulation of insulin secretion via the α2-AR.
  •  
3.
  • Gu, HF, et al. (författare)
  • Quantitative trait loci near the insulin-degrading enzyme (IDE) gene contribute to variation in plasma insulin levels
  • 2004
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 53:8, s. 2137-2142
  • Tidskriftsartikel (refereegranskat)abstract
    • Insulin-degrading enzyme (IDE) plays a principal role in the proteolysis of several peptides in addition to insulin and is encoded by IDE, which resides in a region of chromosome 10q that is linked to type 2 diabetes. Two recent studies presented genetic association data on IDE and type 2 diabetes (one positive and the other negative), but neither explored the fundamental question of whether polymorphism in IDE has a measurable influence on insulin levels in human populations. To address this possibility, 14 single nucleotide polymorphisms (SNPs) from a linkage disequilibrium block encompassing IDE have been genotyped in a sample of 321 impaired glucose tolerant and 403 nondiabetic control subjects. Analyses based on haplotypic genotypes (diplotypes), constructed with SNPs that differentiate common extant haplotypes extending across IDE, provided compelling evidence of association with fasting insulin levels (P = 0.0009), 2-h insulin levels (P = 0.0027), homeostasis model assessment of insulin resistance (P = 0.0001), and BMI (P = 0.0067), with effects exclusively evident in men. The strongest evidence for an effect of a single marker was obtained for rs2251101 (located near the 3′ untranslated region of IDE) on 2-h insulin levels (P = 0.000023). Diplotype analyses, however, suggest the presence of multiple interacting trait-modifying sequences in the region. Results indicate that polymorphism in/near IDE contributes to a large proportion of variance in plasma insulin levels and correlated traits, but questions of sex specificity and allelic heterogeneity will need to be taken into consideration as the molecular basis of the observed phenotypic effects unfolds.
  •  
4.
  • Gu, HF, et al. (författare)
  • Single nucleotide polymorphisms in the proximal promoter region of the adiponectin (APM1) gene are associated with type 2 diabetes in Swedish caucasians
  • 2004
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 5353 Suppl 1, s. S31-S35
  • Tidskriftsartikel (refereegranskat)abstract
    • Adiponectin (APM1) is an adipocyte-derived peptide. The APM1 gene is located on chromosome 3q27 and linked to type 2 diabetes. In patients with type 2 diabetes, the adiponectin level in plasma is decreased in comparison to healthy subjects. To identify genetic defects of the APM1 gene that contribute to the development of type 2 diabetes, we genotyped 13 single nucleotide polymorphisms (SNPs) in 106 patients with type 2 diabetes, 325 patients with impaired glucose tolerance (IGT), and 497 nondiabetic control subjects in Swedish Caucasians by using dynamic allele-specific hybridization (DASH). We found that SNPs −11426(A/G) and −11377(G/C) in the proximal promoter region had significant differences of allele frequencies between type 2 diabetic patients and nondiabetic control subjects (P = 0.02 and P = 0.04, respectively). SNP-11426(A/G) was significantly associated with fasting plasma glucose in type 2 diabetic patients (P = 0.02) and in IGT subjects (P = 0.04), while the patients carrying CC and CG genotypes for SNP-11377(G/C) had a higher BMI than the patients with the GG genotype (P = 0.03). Haplotype analysis of 13 SNPs in the APM1 gene showed that estimates of haplotype frequencies in Swedish Caucasians are similar to those estimated in French Caucasians. However, no significant association of haplotypes with type 2 diabetes and IGT was detected in our study. The present study provides additional evidence that SNPs in the proximal promoter region of the APM1 gene contribute to the development of type 2 diabetes.
  •  
5.
  • Ostenson, CG, et al. (författare)
  • Impaired gene and protein expression of exocytotic soluble N-ethylmaleimide attachment protein receptor complex proteins in pancreatic islets of type 2 diabetic patients
  • 2006
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 55:2, s. 435-440
  • Tidskriftsartikel (refereegranskat)abstract
    • Exocytosis of insulin is dependent on the soluble N-ethylmaleimide attachment protein receptor (SNARE) complex proteins in the B-cells. We assessed insulin release as well as gene and protein expression of SNARE complex protein in isolated pancreatic islets of type 2 diabetic patients (n = 4) and nondiabetic control subjects (n = 4). In islets from the diabetic patients, insulin responses to 8.3 and 16.7 mmol/l glucose were markedly reduced compared with control islets (4.7 ± 0.3 and 8.4 ± 1.8 vs. 17.5 ± 0.1 and 24.3 ± 1.2 μU · islet−1 · h−1, respectively; P < 0.001). Western blot analysis revealed decreased amounts of islet SNARE complex and SNARE-modulating proteins in diabetes: syntaxin-1A (21 ± 5% of control levels), SNAP-25 (12 ± 4%), VAMP-2 (7 ± 4%), nSec1 (Munc 18; 34 ± 13%), Munc 13-1 (27 ± 4%), and synaptophysin (64 ± 7%). Microarray gene chip analysis, confirmed by quantitative PCR, showed that gene expression was decreased in diabetes islets: syntaxin-1A (27 ± 2% of control levels), SNAP-25 (31 ± 7%), VAMP-2 (18 ± 3%), nSec1 (27 ± 5%), synaptotagmin V (24 ± 2%), and synaptophysin (12 ± 2%). In conclusion, these data support the view that decreased islet RNA and protein expression of SNARE and SNARE-modulating proteins plays a role in impaired insulin secretion in type 2 diabetic patients. It remains unclear, however, to which extent this defect is primary or secondary to, e.g., glucotoxicity.
  •  
6.
  • Ristow, M, et al. (författare)
  • Deficiency of phosphofructo-1-kinase/muscle subtype in humans is associated with impairment of insulin secretory oscillations
  • 1999
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 48:8, s. 1557-1561
  • Tidskriftsartikel (refereegranskat)abstract
    • In healthy humans, insulin is secreted in an oscillatory manner. While the underlying mechanisms generating these oscillations are not fully established, increasing evidence suggests a central role for phosphofructo-1-kinase/muscle subtype (PFK1-M), which also serves as the predominantly active PFK1 subtype in the pancreatic beta-cell. The fact that normal oscillatory secretion is impaired in subjects with impaired glucose tolerance and healthy relatives of patients with type 2 diabetes suggests that this defect may be involved in the secretory dysfunction. To evaluate a possible link between inherited PFK1-M deficiency in humans (Tarui's disease or glycogenosis type VII) and altered insulin oscillations, in vivo studies were performed. We determined basal insulin oscillations during 2 h of frequent plasma sampling in two related teen-aged individuals with homozygous and heterozygous PFK1-M deficiency compared with nondeficient, unrelated control subjects. As predicted by the underlying hypothesis, normal oscillations in insulin secretion were completely abolished in the individual with homozygous deficiency of PFK1-M and significantly impaired in the heterozygous individual, as shown by spectral density and autocorrelation analyses. Thus, deficiency of PFK1-M subtype in humans appears to be associated with an impaired oscillatory insulin secretion pattern and may contribute to the commonly observed secretion defects occurring in type 2 diabetes.
  •  
7.
  • Strawbridge, RJ, et al. (författare)
  • Soluble CD93 Is Involved in Metabolic Dysregulation but Does Not Influence Carotid Intima-Media Thickness
  • 2016
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 65:10, s. 2888-2899
  • Tidskriftsartikel (refereegranskat)abstract
    • Type 2 diabetes and cardiovascular disease are complex disorders involving metabolic and inflammatory mechanisms. Here we investigated whether sCD93, a group XIV c-type lectin of the endosialin family, plays a role in metabolic dysregulation or carotid intima-media thickness (IMT). Although no association was observed between sCD93 and IMT, sCD93 levels were significantly lower in subjects with type 2 diabetes (n = 901, mean ± SD 156.6 ± 40.0 ng/mL) compared with subjects without diabetes (n = 2,470, 164.1 ± 44.8 ng/mL, P < 0.0001). Genetic variants associated with diabetes risk (DIAGRAM Consortium) did not influence sCD93 levels (individually or combined in a single nucleotide polymorphism score). In a prospective cohort, lower sCD93 levels preceded the development of diabetes. Consistent with this, a cd93-deficient mouse model (in addition to apoe deficiency) demonstrated no difference in atherosclerotic lesion development compared with apoe−/− cd93-sufficient littermates. However, cd93-deficient mice showed impaired glucose clearance and insulin sensitivity (compared with littermate controls) after eating a high-fat diet. The expression of cd93 was observed in pancreatic islets, and leaky vessels were apparent in cd93-deficient pancreases. We further demonstrated that stress-induced release of sCD93 is impaired by hyperglycemia. Therefore, we propose CD93 as an important component in glucometabolic regulation.
  •  
8.
  • Warwar, N, et al. (författare)
  • Dynamics of glucose-induced localization of PKC isoenzymes in pancreatic beta-cells: diabetes-related changes in the GK rat
  • 2006
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 55:3, s. 590-599
  • Tidskriftsartikel (refereegranskat)abstract
    • Glucose metabolism affects most major signal pathways in pancreatic β-cells. Multiple protein kinases, including protein kinase C (PKC) isoenzymes, are involved in these effects; however, their role is poorly defined. Moreover, the dynamics of kinase isoenzyme activation in reference to the biphasic insulin secretion is unknown. In perfused pancreas of Wistar rats, PKCα staining was strongly associated with insulin staining, jointly accumulating in the vicinity of the plasma membrane during early first-phase insulin response. The signal declined before the onset of second phase and reappeared during second-phase insulin release as foci, only weekly associated with insulin staining; this signal persisted for at least 15 min after glucose stimulation. In the GK rat, glucose had minimal effect on β-cell PKCα. In control β-cells, PKCδ stained as granulated foci with partial association with insulin staining; however, no glucose-dependent translocation was observed. In the GK rat, only minimal staining for PKCδ was observed, increasing exclusively during early first-phase secretion. In Wistar β-cells, PKCε concentrated near the nucleus, strongly associated with insulin staining, with dynamics resembling that of biphasic insulin response, but persisting for 15 min after cessation of stimulation. In GK rats, PKCε staining lacked glucose-dependent changes or association with insulin. PKCζ exhibited bimodal dynamics in control β-cells: during early first phase, accumulation near the cell membrane was observed, dispersing thereafter. This was followed by a gradual accumulation near the nucleus; 15 min after glucose stimulus, clear PKCζ staining was observed within the nucleus. In the GK rat, a similar response was only occasionally observed. In control β-cells, glucose stimulation led to a transient recruitment of PKCθ, associated with first-phase insulin release, not seen in GK β-cell. Data from this and related studies support a role for PKCα in glucose-induced insulin granule recruitment for exocytosis; a role for PKCε in activation of insulin granules for exocytosis and/or in the glucose-generated time-dependent potentiation signal for insulin release; and a dual function for PKCζ in initiating insulin release and in a regulatory role in the transcriptional machinery. Furthermore, diminished levels and/or activation of PKCα, PKCε, PKCθ, and PKCζ could be part of the defective signals downstream to glucose metabolism responsible for the deranged insulin secretion in the GK rat.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 25

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy