SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "L773:2041 1723 OR L773:2041 1723 ;pers:(Hansson Oskar)"

Search: L773:2041 1723 OR L773:2041 1723 > Hansson Oskar

  • Result 1-10 of 15
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Ashton, Nicholas J., et al. (author)
  • A multicentre validation study of the diagnostic value of plasma neurofilament light
  • 2021
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12, s. 1-12
  • Journal article (peer-reviewed)abstract
    • Increased cerebrospinal fluid neurofilament light (NfL) is a recognized biomarker for neurodegeneration that can also be assessed in blood. Here, we investigate plasma NfL as a marker of neurodegeneration in 13 neurodegenerative disorders, Down syndrome, depression and cognitively unimpaired controls from two multicenter cohorts: King's College London (n = 805) and the Swedish BioFINDER study (n = 1,464). Plasma NfL was significantly increased in all cortical neurodegenerative disorders, amyotrophic lateral sclerosis and atypical parkinsonian disorders. We demonstrate that plasma NfL is clinically useful in identifying atypical parkinsonian disorders in patients with parkinsonism, dementia in individuals with Down syndrome, dementia among psychiatric disorders, and frontotemporal dementia in patients with cognitive impairment. Data-driven cut-offs highlighted the fundamental importance of age-related clinical cut-offs for disorders with a younger age of onset. Finally, plasma NfL performs best when applied to indicate no underlying neurodegeneration, with low false positives, in all age-related cut-offs.
  •  
2.
  • Brum, Wagner S., et al. (author)
  • A blood-based biomarker workflow for optimal tau-PET referral in memory clinic settings.
  • 2024
  • In: Nature communications. - 2041-1723. ; 15:1
  • Journal article (peer-reviewed)abstract
    • Blood-based biomarkers for screening may guide tau positrion emissition tomography (PET) scan referrals to optimize prognostic evaluation in Alzheimer's disease. Plasma Aβ42/Aβ40, pTau181, pTau217, pTau231, NfL, and GFAP were measured along with tau-PET in memory clinic patients with subjective cognitive decline, mild cognitive impairment or dementia, in the Swedish BioFINDER-2 study (n = 548) and in the TRIAD study (n = 179). For each plasma biomarker, cutoffs were determined for 90%, 95%, or 97.5% sensitivity to detect tau-PET-positivity. We calculated the percentage of patients below the cutoffs (who would not undergo tau-PET; "saved scans") and the tau-PET-positivity rate among participants above the cutoffs (who would undergo tau-PET; "positive predictive value"). Generally, plasma pTau217 performed best. At the 95% sensitivity cutoff in both cohorts, pTau217 resulted in avoiding nearly half tau-PET scans, with a tau-PET-positivity rate among those who would be referred for a scan around 70%. And although tau-PET was strongly associated with subsequent cognitive decline, in BioFINDER-2 it predicted cognitive decline only among individuals above the referral cutoff on plasma pTau217, supporting that this workflow could reduce prognostically uninformative tau-PET scans. In conclusion, plasma pTau217 may guide selection of patients for tau-PET, when accurate prognostic information is of clinical value.
  •  
3.
  • Cullen, Nicholas C., et al. (author)
  • Plasma biomarkers of Alzheimer’s disease improve prediction of cognitive decline in cognitively unimpaired elderly populations
  • 2021
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12:1
  • Journal article (peer-reviewed)abstract
    • Plasma biomarkers of amyloid, tau, and neurodegeneration (ATN) need to be characterized in cognitively unimpaired (CU) elderly individuals. We therefore tested if plasma measurements of amyloid-β (Aβ)42/40, phospho-tau217 (P-tau217), and neurofilament light (NfL) together predict clinical deterioration in 435 CU individuals followed for an average of 4.8 ± 1.7 years in the BioFINDER study. A combination of all three plasma biomarkers and basic demographics best predicted change in cognition (Pre-Alzheimer’s Clinical Composite; R2 = 0.14, 95% CI [0.12–0.17]; P < 0.0001) and subsequent AD dementia (AUC = 0.82, 95% CI [0.77–0.91], P < 0.0001). In a simulated clinical trial, a screening algorithm combining all three plasma biomarkers would reduce the required sample size by 70% (95% CI [54–81]; P < 0.001) with cognition as trial endpoint, and by 63% (95% CI [53–70], P < 0.001) with subsequent AD dementia as trial endpoint. Plasma ATN biomarkers show usefulness in cognitively unimpaired populations and could make large clinical trials more feasible and cost-effective.
  •  
4.
  • Franzmeier, Nicolai, et al. (author)
  • Functional brain architecture is associated with the rate of tau accumulation in Alzheimer’s disease
  • 2020
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11:1
  • Journal article (peer-reviewed)abstract
    • In Alzheimer’s diseases (AD), tau pathology is strongly associated with cognitive decline. Preclinical evidence suggests that tau spreads across connected neurons in an activity-dependent manner. Supporting this, cross-sectional AD studies show that tau deposition patterns resemble functional brain networks. However, whether higher functional connectivity is associated with higher rates of tau accumulation is unclear. Here, we combine resting-state fMRI with longitudinal tau-PET in two independent samples including 53 (ADNI) and 41 (BioFINDER) amyloid-biomarker defined AD subjects and 28 (ADNI) vs. 16 (BioFINDER) amyloid-negative healthy controls. In both samples, AD subjects show faster tau accumulation than controls. Second, in AD, higher fMRI-assessed connectivity between 400 regions of interest (ROIs) is associated with correlated tau-PET accumulation in corresponding ROIs. Third, we show that a model including baseline connectivity and tau-PET is associated with future tau-PET accumulation. Together, connectivity is associated with tau spread in AD, supporting the view of transneuronal tau propagation.
  •  
5.
  • Frontzkowski, Lukas, et al. (author)
  • Earlier Alzheimer’s disease onset is associated with tau pathology in brain hub regions and facilitated tau spreading
  • 2022
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 13:1
  • Journal article (peer-reviewed)abstract
    • In Alzheimer’s disease (AD), younger symptom onset is associated with accelerated disease progression and tau spreading, yet the mechanisms underlying faster disease manifestation are unknown. To address this, we combined resting-state fMRI and longitudinal tau-PET in two independent samples of controls and biomarker-confirmed AD patients (ADNI/BioFINDER, n = 240/57). Consistent across both samples, we found that younger symptomatic AD patients showed stronger tau-PET in globally connected fronto-parietal hubs, i.e., regions that are critical for maintaining cognition in AD. Stronger tau-PET in hubs predicted faster subsequent tau accumulation, suggesting that tau in globally connected regions facilitates connectivity-mediated tau spreading. Further, stronger tau-PET in hubs mediated the association between younger age and faster tau accumulation in symptomatic AD patients, which predicted faster cognitive decline. These independently validated findings suggest that younger AD symptom onset is associated with stronger tau pathology in brain hubs, and accelerated tau spreading throughout connected brain regions and cognitive decline.
  •  
6.
  • Janelidze, Shorena, et al. (author)
  • Cerebrospinal fluid p-tau217 performs better than p-tau181 as a biomarker of Alzheimer’s disease
  • 2020
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11:1
  • Journal article (peer-reviewed)abstract
    • Cerebrospinal fluid (CSF) p-tau181 (tau phosphorylated at threonine 181) is an established biomarker of Alzheimer’s disease (AD), reflecting abnormal tau metabolism in the brain. Here we investigate the performance of CSF p-tau217 as a biomarker of AD in comparison to p-tau181. In the Swedish BioFINDER cohort (n = 194), p-tau217 shows stronger correlations with the tau positron emission tomography (PET) tracer [18F]flortaucipir, and more accurately identifies individuals with abnormally increased [18F]flortaucipir retention. Furthermore, longitudinal increases in p-tau217 are higher compared to p-tau181 and better correlate with [18F]flortaucipir uptake. P-tau217 correlates better than p-tau181 with CSF and PET measures of neocortical amyloid-β burden and more accurately distinguishes AD dementia from non-AD neurodegenerative disorders. Higher correlations between p-tau217 and [18F]flortaucipir are corroborated in an independent EXPEDITION3 trial cohort (n = 32). The main results are validated using a different p-tau217 immunoassay. These findings suggest that p-tau217 might be more useful than p-tau181 in the diagnostic work up of AD.
  •  
7.
  • Karlsson, Linda, et al. (author)
  • Cerebrospinal fluid reference proteins increase accuracy and interpretability of biomarkers for brain diseases.
  • 2024
  • In: Nature communications. - 2041-1723. ; 15:1
  • Journal article (peer-reviewed)abstract
    • Cerebrospinal fluid (CSF) biomarkers reflect brain pathophysiology and are used extensively in translational research as well as in clinical practice for diagnosis of neurological diseases, e.g., Alzheimer's disease (AD). However, CSF biomarker concentrations may be influenced by non-disease related inter-individual variability. Here we use a data-driven approach to demonstrate the existence of inter-individual variability in mean standardized CSF protein levels. We show that these non-disease related differences cause many commonly reported CSF biomarkers to be highly correlated, thereby producing misleading results if not accounted for. To adjust for this inter-individual variability, we identified and evaluated high-performing reference proteins which improved the diagnostic accuracy of key CSF AD biomarkers. Our reference protein method attenuates the risk for false positive findings, and improves the sensitivity and specificity of CSF biomarkers, with broad implications for both research and clinical practice.
  •  
8.
  • Llorens, Franc, et al. (author)
  • Cerebrospinal fluid lipocalin 2 as a novel biomarker for the differential diagnosis of vascular dementia
  • 2020
  • In: Nature Communications. - : NATURE PUBLISHING GROUP. - 2041-1723. ; 11:1
  • Journal article (peer-reviewed)abstract
    • The clinical diagnosis of vascular dementia (VaD) is based on imaging criteria, and specific biochemical markers are not available. Here, we investigated the potential of cerebrospinal fluid (CSF) lipocalin 2 (LCN2), a secreted glycoprotein that has been suggested as mediating neuronal damage in vascular brain injuries. The study included four independent cohorts with a total n=472 samples. LCN2 was significantly elevated in VaD compared to controls, Alzheimers disease (AD), other neurodegenerative dementias, and cognitively unimpaired patients with cerebrovascular disease. LCN2 discriminated VaD from AD without coexisting VaD with high accuracy. The main findings were consistent over all cohorts. Neuropathology disclosed a high percentage of macrophages linked to subacute infarcts, reactive astrocytes, and damaged blood vessels in multi-infarct dementia when compared to AD. We conclude that CSF LCN2 is a promising candidate biochemical marker in the differential diagnosis of VaD and neurodegenerative dementias. Diagnosis of vascular dementia is hampered by the lack of biochemical markers for this disease. Here, the authors show that vascular dementia is associated with increased lipocalin-2 in cerebrospinal fluid, compared to controls and patients with other forms of dementia.
  •  
9.
  • Mattsson-Carlgren, Niklas, et al. (author)
  • Increasing the reproducibility of fluid biomarker studies in neurodegenerative studies.
  • 2020
  • In: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11:1
  • Journal article (peer-reviewed)abstract
    • Biomarkers have revolutionized scientific research on neurodegenerative diseases, in particular Alzheimer's disease, transformed drug trial design, and are also increasingly improving patient management in clinical practice. A few key cerebrospinal fluid biomarkers have been robustly associated with neurodegenerative diseases. Several novel biomarkers are very promising, especially blood-based markers. However, many biomarker findings have had low reproducibility despite initial promising results. In this perspective, we identify possible sources for low reproducibility of studies on fluid biomarkers for neurodegenerative diseases, with a focus on Alzheimer's disease. We suggest guidelines for researchers and journal editors, with the aim to improve reproducibility of findings.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view