SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:2045 2322 OR L773:2045 2322 ;pers:(Laurell Thomas)"

Sökning: L773:2045 2322 OR L773:2045 2322 > Laurell Thomas

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Antfolk, Maria, et al. (författare)
  • Label-free single-cell separation and imaging of cancer cells using an integrated microfluidic system
  • 2017
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • The incidence of cancer is increasing worldwide and metastatic disease, through the spread of circulating tumor cells (CTCs), is responsible for the majority of the cancer deaths. Accurate monitoring of CTC levels in blood provides clinical information supporting therapeutic decision making, and improved methods for CTC enumeration are asked for. Microfluidics has been extensively used for this purpose but most methods require several post-separation processing steps including concentration of the sample before analysis. This induces a high risk of sample loss of the collected rare cells. Here, an integrated system is presented that efficiently eliminates this risk by integrating label-free separation with single cell arraying of the target cell population, enabling direct on-chip tumor cell identification and enumeration. Prostate cancer cells (DU145) spiked into a sample with whole blood concentration of the peripheral blood mononuclear cell (PBMC) fraction were efficiently separated and trapped at a recovery of 76.2 ± 5.9% of the cancer cells and a minute contamination of 0.12 ± 0.04% PBMCs while simultaneously enabling a 20x volumetric concentration. This constitutes a first step towards a fully integrated system for rapid label-free separation and on-chip phenotypic characterization of circulating tumor cells from peripheral venous blood in clinical practice.
  •  
2.
  • Gidlöf, Olof, et al. (författare)
  • Proteomic profiling of extracellular vesicles reveals additional diagnostic biomarkers for myocardial infarction compared to plasma alone
  • 2019
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Extracellular vesicles (EVs) are submicron, membrane-enclosed particles that are released from cells in various pathophysiological states. The molecular cargo of these vesicles is considered to reflect the composition of the cell of origin, and the EV proteome is therefore a potential source of biomarkers for various diseases. Our aim was to determine whether EVs isolated from plasma provide additional diagnostic value or improved pathophysiological understanding compared to plasma alone in the context of myocardial infarction (MI). A panel of proximity extension assays (n = 92) was employed to analyze EV lysates and plasma from patients with MI (n = 60) and healthy controls (n = 22). After adjustment for multiple comparisons, a total of 11 dysregulated proteins were identified in EVs of MI patients compared to the controls (q < 0.01). Three of these proteins: chymotrypsin C (CTRC), proto-oncogene tyrosine-protein kinase SRC (SRC) and C-C motif chemokine ligand 17 (CCL17) were unaltered in the corresponding plasma samples. As biomarkers for MI, rudimentary to no evidence exists for these proteins. In a separate group of patients with varying degrees of coronary artery disease, the decrease in EV-associated (but not plasma-related) SRC levels was confirmed by ELISA. Confirmation of the presence of SRC on EVs of different sizes and cellular origins was performed with ELISA, flow cytometry and nanoparticle tracking analysis. In conclusion, the data revealed that despite a similarity in the EV and plasma proteomes, analysis of isolated EVs does indeed provide additional diagnostic information that cannot be obtained from plasma alone.
  •  
3.
  • Ohlsson, Pelle, et al. (författare)
  • Acoustic impedance matched buffers enable separation of bacteria from blood cells at high cell concentrations
  • 2018
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Sepsis is a common and often deadly systemic response to an infection, usually caused by bacteria. The gold standard for finding the causing pathogen in a blood sample is blood culture, which may take hours to days. Shortening the time to diagnosis would significantly reduce mortality. To replace the time-consuming blood culture we are developing a method to directly separate bacteria from red and white blood cells to enable faster bacteria identification. The blood cells are moved from the sample flow into a parallel stream using acoustophoresis. Due to their smaller size, the bacteria are not affected by the acoustic field and therefore remain in the blood plasma flow and can be directed to a separate outlet. When optimizing for sample throughput, 1 ml of undiluted whole blood equivalent can be processed within 12.5 min, while maintaining the bacteria recovery at 90% and the blood cell removal above 99%. That makes this the fastest label-free microfluidic continuous flow method per channel to separate bacteria from blood with high bacteria recovery (>80%). The high throughput was achieved by matching the acoustic impedance of the parallel stream to that of the blood sample, to avoid that acoustic forces relocate the fluid streams.
  •  
4.
  • Olm, Franziska, et al. (författare)
  • Label-free neuroblastoma cell separation from hematopoietic progenitor cell products using acoustophoresis - towards cell processing of complex biological samples
  • 2019
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 9:1, s. 8777-8777
  • Tidskriftsartikel (refereegranskat)abstract
    • Processing of complex cell preparations such as blood and peripheral blood progenitor cell (PBPC) transplants using label-free technologies is challenging. Transplant-contaminating neuroblastoma cells (NBCs) can contribute to relapse, and we therefore aimed to provide proof-of-principle evidence that label-free acoustophoretic separation can be applied for diagnostic NBC enrichment and removal ("purging") from human blood and PBPC products. Neuroblastoma cells spiked into blood and PBPC preparations served as model systems. Acoustophoresis enabled to enrich NBCs from mononuclear peripheral blood cells and PBPC samples with recovery rates of up to 60-97%. When aiming at high purity, NBC purities of up to 90% were realized, however, compromising recovery. Acoustophoretic purging of PBPC products allowed substantial tumour cell depletion of 1.5-2.3 log. PBPC loss under these conditions was considerable (>43%) but could be decreased to less than 10% while still achieving NBC depletion rates of 60-80%. Proliferation of cells was not affected by acoustic separation. These results provide first evidence that NBCs can be acoustically separated from blood and stem cell preparations with high recovery and purity, thus indicating that acoustophoresis is a promising technology for the development of future label-free, non-contact cell processing of complex cell products.
  •  
5.
  • Park, Jeewoong, et al. (författare)
  • Acousto-microfluidics for screening of ssDNA aptamer
  • 2016
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • We demonstrate a new screening method for obtaining a prostate-specific antigen (PSA) binding aptamer based on an acoustofluidic separation (acoustophoreis) technique. Since acoustophoresis provides simultaneous washing and separation in a continuous flow mode, we efficiently obtained a PSA binding aptamer that shows high affinity without any additional washing step, which is necessary in other screening methods. In addition, next-generation sequencing (NGS) was applied to accelerate the identification of the screened ssDNA pool, improving the selecting process of the aptamer candidate based on the frequency ranking of the sequences. After the 8 th round of the acoustophoretic systematic evolution of ligands by exponential enrichment (SELEX) and following sequence analysis with NGS, 7 PSA binding ssDNA aptamer-candidates were obtained and characterized with surface plasmon resonance (SPR) for affinity and specificity. As a result of the new SELEX method with PSA as the model target protein, the best PSA binding aptamer showed specific binding to PSA with a dissociation constant (K d) of 0.7 nM.
  •  
6.
  • Urbansky, Anke, et al. (författare)
  • Rapid and effective enrichment of mononuclear cells from blood using acoustophoresis
  • 2017
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Effective separation methods for fractionating blood components are needed for numerous diagnostic and research applications. This paper presents the use of acoustophoresis, an ultrasound based microfluidic separation technology, for label-free, gentle and continuous separation of mononuclear cells (MNCs) from diluted whole blood. Red blood cells (RBCs) and MNCs behave similar in an acoustic standing wave field, compromising acoustic separation of MNC from RBC in standard buffer systems. However, by optimizing the buffer conditions and thereby changing the acoustophoretic mobility of the cells, we were able to enrich MNCs relative to RBCs by a factor of 2,800 with MNC recoveries up to 88%. The acoustophoretic microchip can perform cell separation at a processing rate of more than 1 × 105 cells/s, corresponding to 5 μl/min undiluted whole blood equivalent. Thus, acoustophoresis can be easily integrated with further down-stream applications such as flow cytometry, making it a superior alternative to existing MNC isolation techniques.
  •  
7.
  • Van Assche, David, et al. (författare)
  • Gradient acoustic focusing of sub-micron particles for separation of bacteria from blood lysate
  • 2020
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Handling of submicron-sized objects is important in many biochemical and biomedical applications, but few methods today can precisely manipulate this range of particles. We present gradient acoustic focusing that enables flow-through particle separation of submicron particles and cells and we apply it for separation of bacteria from blood lysate to facilitate their detection in whole blood for improved diagnostics. To control suspended objects below the classical 2µm size limit for acoustic focusing, we introduce a co-flowing acoustic impedance gradient to generate a stabilizing acoustic volume force that supresses acoustic streaming. The method is validated theoretically and experimentally using polystyrene particles, Staphylococcus aureus, Streptococcus pneumoniae and Escherichia coli. The applicability of the method is demonstrated by the separation of bacteria from selectively chemically lysed blood. Combined with downstream operations, this new approach opens up for novel methods for sepsis diagnostics.
  •  
8.
  • Vitali, Valentina, et al. (författare)
  • Differential impedance spectra analysis reveals optimal actuation frequency in bulk mode acoustophoresis
  • 2019
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • This work reports a method to select the optimal working frequency in transversal bulk resonator acoustophoretic devices by electrical impedance measurements. The impedance spectra of acoustophoretic devices are rich in spurious resonance peaks originating from different resonance modes in the system not directly related to the channel resonance, why direct measurement of the piezoelectric transducer impedance spectra is not a viable strategy. This work presents, for the first time, that the resonance modes of microchip integrated acoustophoresis channels can be identified by sequentially measuring the impedance spectra of the acoustophoretic device when the channel is filled with two different fluids and subsequently calculate the Normalized Differential Spectrum (NDS). Seven transversal bulk resonator acoustophoretic devices of different materials and designs were tested with successful results. The developed method enables a rapid, reproducible and precise determination of the optimal working frequency.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy