SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:2156 2202 ;hsvcat:3"

Sökning: L773:2156 2202 > Medicin och hälsovetenskap

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Montagnani, Leonardo, et al. (författare)
  • A new mass conservation approach to the study of CO2 advection in an alpine forest
  • 2009
  • Ingår i: Journal of Geophysical Research. - 2156-2202. ; 114
  • Tidskriftsartikel (refereegranskat)abstract
    • A new method is proposed for the computation of CO2 Net Ecosystem Exchange (NEE) and its components in a forest ecosystem. Advective flux is estimated by taking into account the air mass conservation principle. For this purpose, wind and dry air density values on the surface of the control volume are first corrected and then the advective flux is estimated on the surface of the control volume. Turbulent flux is also computed along the surface of the control volume while storage flux is computed inside the volume. Additional characteristics of this method are that incompressibility of the mean flow is not assumed a priori, and that vertical and horizontal advective fluxes are not treated separately, but their sum is estimated directly. The methodology is applied to experimental data collected with a three-dimensional scheme at the alpine site of Renon during the Advex project (July 2005). The advection flux was found to be prevailing positive at night and negative during the day, as was found in previous studies on advection for the same site, but showed a lower scatter in half-hour calculated values. We tested the effect of its summation on turbulent and storage fluxes to produce half-hourly values of NEE. Nighttime NEE values were used in functional relations with soil temperature, daytime values with PPFD. The effect of addition of the advection component was an increase in the values of parameters indicating ecosystem respiration, quantum yield, and photosynthetic capacity. The coefficient of correlation between NEE and environmental drivers increased.
  •  
2.
  • Björkman, Mats P., 1978, et al. (författare)
  • Nitrate postdeposition processes in Svalbard surface snow
  • 2014
  • Ingår i: Journal of Geophysical Research - Atmospheres. - 0148-0227 .- 2156-2202 .- 2169-897X .- 2169-8996. ; 119:22
  • Tidskriftsartikel (refereegranskat)abstract
    • The snowpack acts as a sink for atmospheric reactive nitrogen, but several postdeposition pathways have been reported to alter the concentration and isotopic composition of snow nitrate with implications for atmospheric boundary layer chemistry, ice core records, and terrestrial ecology following snow melt. Careful daily sampling of surface snow during winter (11-15 February 2010) and springtime (9 April to 5 May 2010) near Ny-Ålesund, Svalbard reveals a complex pattern of processes within the snowpack. Dry deposition was found to dominate over postdeposition losses, with a net nitrate deposition rate of (0.6+/-0.2) (my) molm 2 d 1 to homogeneous surface snow. At Ny-Ålesund, such surface dry deposition can either solely result from long-range atmospheric transport of oxidized nitrogen or include the redeposition of photolytic/bacterial emission originating from deeper snow layers. Our data further confirm that polar basin air masses bring 15 N-depleted nitrate to Svalbard, while high nitrate (delta) (18O) values only occur in connection with ozone-depleted air, and show that these signatures are reflected in the deposited nitrate. Such ozone-depleted air is attributed to active halogen chemistry in the air masses advected to the site. However, here the Ny-Ålesund surface snow was shown to have an active role in the halogen dynamics for this region, as indicated by declining bromide concentrations and increasing nitrate (delta) (18O), during high BrO (low-ozone) events. The data also indicate that the snowpack BrO-NO x cycling continued in postevent periods, when ambient ozone and BrO levels recovered.
  •  
3.
  • Nguyen Ngoc, Hung, et al. (författare)
  • Chemical composition and morphology of individual aerosol particles from a CARIBIC flight at 10 km altitude between 50 degrees N and 30 degrees S
  • 2008
  • Ingår i: Journal of Geophysical Research. - 2156-2202. ; 113:D23
  • Tidskriftsartikel (refereegranskat)abstract
    • Analysis of individual particles by analytical electron microscopy as well as quantitative analysis using particle-induced X-ray emission (PIXE) and particle elastic scattering analysis (PESA) were carried out on samples collected from a flight at 10 km altitude between 50 degrees N and 30 degrees S as part of the Civil Aircraft for Regular Investigation of the atmosphere Based on an Instrument Container (CARIBIC) project (http://www.caribic-atmospheric.com). Particle morphology showed large variability with sampling latitude. Complicated branched structures dominated the large particles of the extratropical northern and southern hemisphere and the northern tropics. Particles in the tropics of the southern hemisphere were small in size and large in number concentration, whereas particles in or close to the intertropical convergence zone were few and small in size. Particles in the lowermost stratosphere were found to have similar structures but more branched than the ones found in the upper troposphere of the extratropics. Quantitative analysis revealed that the sulfur concentration varied by a factor of 50 in the nine samples analyzed in this study. The carbon-to-sulfur mass concentration ratio was lowest in the lowermost stratosphere (0.5) and highest in the tropics of the southern hemisphere (3.5). The elemental distribution of carbon and sulfur in individual particles was mapped by energy-filtered transmission electron microscopy (EFTEM). Almost all particles analyzed contained a mixture of carbonaceous and sulfurous matter. Particles with satellites were found by EFTEM to contain both carbon and sulfur in the central particle, whereas in the satellite particles only carbonaceous material was detected.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy