SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:2156 2202 ;lar1:(liu)"

Sökning: L773:2156 2202 > Linköpings universitet

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Backstrand, K., et al. (författare)
  • Total hydrocarbon flux dynamics at a subarctic mire in northern Sweden
  • 2008
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 113, s. G03026-
  • Tidskriftsartikel (refereegranskat)abstract
    • This is a study of the spatial and temporal variability of total hydrocarbon (THC) emissions from vegetation and soil at a subarctic mire, northern Sweden. THCs include methane (CH4) and nonmethane volatile organic compounds (NMVOCs), both of which are atmospherically important trace gases and constitute a significant proportion of the carbon exchange between biosphere and atmosphere. Reliable characterization of the magnitude and the dynamics of the THC fluxes from high latitude peatlands are important when considering to what extent trace gas emissions from such ecosystems may change and feed back on climate regulation as a result of warmer climate and melting permafrost. High frequency measurements of THC and carbon dioxide (CO2) were conducted during four sequential growing seasons in three localities representing the trophic range of plant communities at the mire. The magnitude of the THC flux followed the moisture gradient with increasing emissions from a dry Palsa site (2.2 +/- 0.1 mgC m(-2) d(-1)), to a wet intermediate melt feature with Sphagnum spp. (28 +/- 0.3 mgC m(-2) d(-1)) and highest emissions from a wet Eriophorum spp. site (122 +/- 1.4 mgC m(-2) d(-1)) (overall mean +/- 1 SE, n = 2254, 2231 and 2137). At the Palsa site, daytime THC flux was most strongly related to air temperature while daytime THC emissions at the Sphagnum site had a stronger relation to ground temperature. THC emissions at both the wet sites were correlated to net ecosystem exchange of CO2. An overall spatial correlation indicated that areas with highly productive vegetation communities also had high THC emission potential.
  •  
2.
  • Bastviken, David, et al. (författare)
  • Determination of the piston velocity for water-air interfaces using flux chambers, acoustic Doppler velocimetry, and IR imaging of the water surface
  • 2013
  • Ingår i: Journal of Geophysical Research - Biogeosciences. - : American Geophysical Union (AGU). - 0148-0227 .- 2156-2202 .- 2169-8953. ; 118:2, s. 770-782
  • Tidskriftsartikel (refereegranskat)abstract
    • The transport of gasses dissolved in surface waters across the water-atmosphere interface is controlled by the piston velocity (k). This coefficient has large implications for, e.g., greenhouse gas fluxes but is challenging to quantify in situ. At present, empirical k-wind speed relationships from a small number of studies and systems are often extrapolated without knowledge of model performance. This study compares empirical k estimates from flux chamber and surface water gas concentration measurements (chamber method), eddy cell modeling and dissipation rates of turbulent kinetic energy (dissipation method), and a surface divergence method based on IR imaging, at a fetch limited coastal observation station. We highlight strengths and weaknesses of the methods, and relate measured k values to parameters such as wave height, and surface skin velocities. The chamber and dissipation methods yielded k values in the same order of magnitude over a 24h period with varying wind conditions (up to 10ms−1, closest weather station) and wave heights (0.01–0.30m). The surface divergence method most likely did not resolve the small turbulent eddies that cause the main divergence. Flux chamber estimates showed the largest temporal variability, with lower k values than the dissipation method during calm conditions, where the dissipation method failed as waves and instrument noise dominated over the turbulence signal. There was a strong correspondence between k from chambers, the RMS of surface velocities from IR imaging, and wave height. We propose a method to estimate area integrated values of k from wave measurements.
  •  
3.
  • Bastviken, D., et al. (författare)
  • Fates of methane from different lake habitats : Connecting whole-lake budgets and CH4 emissions
  • 2008
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 113:G2
  • Tidskriftsartikel (refereegranskat)abstract
    • Methane (CH4) represents a major product of organic matter decomposition in lakes. Once produced in the sediments, CH4 can be either oxidized or emitted as a greenhouse gas to the atmosphere. Lakes represent an important source of atmospheric CH4, but the relative magnitudes of the internal pathways that lead to CH4 emissions are not yet clear. We quantified internal cycling and methane emissions in three lakes during summer stratification. These methane budgets included: sediment release of CH4 at different depths; water column transport patterns and methane oxidation; methane storage in the water column; and methane emissions to the atmosphere by diffusion and ebullition. The contribution of CH4 carbon, via oxidation by methanotrophic bacteria, to pelagic food webs was also estimated. Despite the very low concentration of CH4 in surface waters, shallow, epilimnetic sediments were major contributors of CH4 to the atmosphere. While 51 - 80% of the CH4 produced in deep sediments was oxidized in the water column, most of the CH4 released from shallow sediment escaped oxidation and reached the atmosphere. Epilimnetic sediments accounted for 100% of CH4 emitted during summer stratification, and 14 - 76% considering the release of CH4 stored in deep water layers during lake circulation after the stratification period; diffusive emission accounted for 26 - 48% and ebullition the remainder. These results indicate that it is important to address transport rates of CH4 from the shallow sediment along with the production-consumption processes when trying to understand methane dynamics and the regulation of lake methane emissions.
  •  
4.
  • Dieckmann, Mark E, 1969-, et al. (författare)
  • Particle-in-cell simulations of electron acceleration by a simple capacitative antenna in collisionless plasma
  • 2004
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 109:A12
  • Tidskriftsartikel (refereegranskat)abstract
    • We examine the electron acceleration by a localized electrostatic potential oscillating at high frequencies by means of particle-in-cell (PIC) simulations, in which we apply oscillating electric fields to two neighboring simulation cells. We derive an analytic model for the direct electron heating by the externally driven antenna electric field, and we confirm that it approximates well the electron heating obtained in the simulations. In the simulations, transient waves accelerate electrons in a sheath surrounding the antenna. This increases the Larmor radii of the electrons close to the antenna, and more electrons can reach the antenna location to interact with the externally driven fields. The resulting hot electron sheath is dense enough to support strong waves that produce high-energy sounder-accelerated electrons (SAEs) by their nonlinear interaction with the ambient electrons. By increasing the emission amplitudes in our simulations to values that are representative for the ones of the sounder on board the OEDIPUS C (OC) satellites, we obtain electron acceleration into the energy range which is comparable to the 20 keV energies of the SAE observed by the OC mission. The emission also triggers stable electrostatic waves oscillating at frequencies close to the first harmonic of the electron cyclotron frequency. We find this to be an encouraging first step of examining SAE generation with kinetic numerical simulation codes.
  •  
5.
  • Dieckmann, Mark E, 1969-, et al. (författare)
  • Plasma sounding at the upper hybrid frequency
  • 2000
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 105:A6, s. 13103-13117
  • Tidskriftsartikel (refereegranskat)abstract
    • A sounder measures the density of plasmas in various parts of the solar system. The sounder emits wave pulses into the ambient plasma and listens to the response. Intensity peaks in the wave response are typically related to two mechanisms. One is provided by waves that are reflected off plasma inhomogeneities and propagate back to the emitting antenna, where they are then detected. The second is provided by waves propagating with the same group velocity as that of the receiving antenna. In the second case the waves stay close to the antenna and thus yield a long-lasting response. Response peaks to sounding at the upper hybrid (UH) frequency have, in most cases, been related to reflected waves. In this work we examine if accompanying waves can give rise to the UH response peak. We examine quantitatively how the plasma response to sounding at the UH frequency depends on the plasma density, on the electron temperature, and on the emission amplitude. For the first two parameters this is done by solving the linear dispersion relation. The well-known property of the UH waves to change from having a zero group velocity to propagating waves, depending on how the electron density compares to the electron cyclotron frequency, is applied to Alouette sounder data. It is discussed how the change in the group velocity may affect the spectral profile of the UH resonance. We present results from numerical particle in cell (PIC) simulations which show that in the case of nonpropagating UH waves, energy can be coupled into the plasma even though the vanishing group velocity of the UH waves should not allow this. The PIC simulations and sounder data from the Alouette mission show that in the case of propagating UH waves the response duration to sounding may be used to determine the electron temperature. Emission amplitudes that are typical for plasma sounders are also shown to suppress the generation of certain electron cyclotron harmonic waves.
  •  
6.
  • Eliasson, Bengt, et al. (författare)
  • Full-scale simulation study of the initial stage of ionospheric turbulence
  • 2008
  • Ingår i: Journal of Geophysical Research. - : American Geophysical Union (AGU). - 0148-0227 .- 2156-2202. ; 113:0148-0227, s. A02305-1-A02305-9
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a full-scale simulation of the nonlinear interaction between an intense electromagnetic wave and the Earth's ionosphere, by means of a generalized Zakharov model. The radio wave propagates from the neutral atmosphere into the ionospheric plasma layer and reaches the turning points of the ordinary and extraordinary wave modes. At the turning point of the ordinary mode, a parametric instability takes place in which the electromagnetic wave decays into an electron plasma wave and an ion acoustic wave with a typical wavelength of one meter. This is followed by collapse and caviton formation and trapping of the intense electron plasma wave. The cavitons lead to an efficient excitation of slow X (or Z) waves that propagate further into the denser ionospheric layer at higher altitudes. We use a realistic ion (oxygen) mass, length scales, and other plasma parameters. This numerical study should be useful for understanding the nonlinear interaction between intense radio waves and the ionosphere.   
  •  
7.
  • Hugelius, Gustaf, et al. (författare)
  • Mapping the degree of decomposition and thaw remobilization potential of soil organic matter in discontinuous permafrost terrain
  • 2012
  • Ingår i: Journal of Geophysical Research. - : American Geophysical Union (AGU). - 0148-0227 .- 2156-2202. ; 117:G2
  • Tidskriftsartikel (refereegranskat)abstract
    • [1] Soil organic matter (SOM) stored in permafrost terrain is a key component in the global carbon cycle, but its composition and lability are largely unknown. We characterize and assess the degree of decomposition of SOM at nine sites representing major land-cover and soil types (including peat deposits) in an area of discontinuous permafrost in the European Russian Arctic. We analyze the elemental and stable isotopic composition of bulk SOM, and the degree of humification and elemental composition of humic acids (HA). The degree of decomposition is low in the O-horizons of mineral soils and peat deposits. In the permafrost free non-peatland soils there is enrichment of13C and 15N, and decrease in bulk C/N ratios indicating more decomposed material with depth. Spectral characterization of HA indicates low humification in O-horizons and peat deposits, but increase in humification in the deeper soil horizons of non-peatland soils, and in mineral horizons underlying peat deposits. GIS based maps indicate that less decomposed OM characteristic of the O-horizon and permafrost peat deposits constitute the bulk of landscape SOM (>70% of landscape soil C). We conclude, however, that permafrost has not been the key environmental factor controlling the current degree of decomposition of SOM in this landscape due to relatively recent permafrost aggradation. In this century, active layer deepening will mainly affect SOM with a relatively high degree of decomposition in deeper mineral soil horizons. Additionally, thawing permafrost in peat plateaus may cause rapid remobilization of less decomposed SOM through thermokarst expansion.
  •  
8.
  • Meier, H E Marcus, et al. (författare)
  • A multiprocessor coupled ice-ocean model for the Baltic Sea: Application to salt inflow
  • 2003
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 108:C8, s. 3273-
  • Tidskriftsartikel (refereegranskat)abstract
    • Within the Swedish Regional Climate Modeling Program, SWECLIM, a three-dimensional (3-D) coupled ice-ocean model for the Baltic Sea has been developed to simulate physical processes on timescales of hours to decades. The code has been developed based on the massively parallel version of the Ocean Circulation Climate Advanced Modeling (OCCAM) project of the Bryan-Cox-Semtner model. An elastic-viscous-plastic ice rheology is employed, resulting in a fully explicit numerical scheme that improves computational efficiency. An improved two-equation turbulence model has been embedded to simulate the seasonal cycle of surface mixed layer depths as well as deepwater mixing on decadal timescale. The model has open boundaries in the northern Kattegat and is forced with realistic atmospheric fields and river runoff. Optimized computational performance and advanced algorithms to calculate processor maps make the code fast and suitable for multi-year, high-resolution simulations. As test cases, the major salt water inflow event in January 1993 and the stagnation period 1980-1992, have been selected. The agreement between model results and observations is regarded as good. Especially, the time evolution of the halocline in the Baltic proper is realistically simulated also for the longer period without flux correction, data assimilation, or reinitialization. However, in particular, smaller salt water inflows into the Bornholm Basin are underestimated, independent of the horizontal model resolution used. It is suggested that the mixing parameterization still needs improvements. In addition, a series of process studies of the inflow period 1992/1993 have been performed to show the impact of river runoff, wind speed, and sea level in Kattegat. Natural interannual runoff variations control salt water inflows into the Bornholm Basin effectively. The effect of wind speed variation on the salt water flux from the Arkona Basin to the Bornholm Basin is minor.
  •  
9.
  •  
10.
  • Svensson, Bo, 1946-, et al. (författare)
  • Methane emission from Swedish mires : National and regional budgets and dependence on mire vegetation
  • 2001
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 106:D18, s. 20847-20860
  • Tidskriftsartikel (refereegranskat)abstract
    • A national land use inventory program was used to estimate the flux of methane from Swedish mires. During the snow-free season in 1994, methane fluxes were monitored at 60% (n = 619) of the total number of permanent inventory plots for the four mire vegetation classes included. The methane flux was measured only once at each inventory plot using transparent static chambers, yielding 3157 (89%) accepted flux rates. The temperature during the measurement period was close to the long-term (30 year) average in the north and much warmer in the south. The precipitation was lower than the long-term average. Average flux rates, specific for each mire vegetation class and geographical region, varied between 8 and 238 mg CH4 m-2 d-1. The national averages ▒ SE (mg CH4 m-2 d-1) were hummock communities, 24 ▒ 6, transitional fens, 15 ▒ 2, short sedge fens, 49 ▒ 4, and tall sedge fens, 97 ▒ 22. To derive the annual flux, the number of days with a daily average air temperature over 5░C was used. The annual methane fluxes for each mire vegetation class and region varied between 1.5 and 40 g CH4 m-2 yr-1. The annual methane fluxes (average ▒ SE in g m-2 yr-1) for each mire vegetation class for the whole of Sweden were hummock sites, 4.9 ▒ 1.3, transitional fens, 2.5 ▒ 0.5, low sedge fens, 8.2 ▒ 0.8, and tall sedge fens, 16.5 ▒ 3.6. The methane flux (▒95% confidence limits) in 1994 from the monitored mire types in Sweden was 0.29 ▒ 0.05 Tg CH4. The low and tall sedge mires accounted for 96% of the methane emitted. Copyright 2001 by the American Geophysical Union.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy