SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:2156 2202 ;mspu:(researchreview)"

Sökning: L773:2156 2202 > Forskningsöversikt

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bigelow, NH, et al. (författare)
  • Climate change and Arctic ecosystems: 1. Vegetation changes north of 55 degrees N between the last glacial maximum, mid-Holocene, and present
  • 2003
  • Ingår i: Journal of Geophysical Research. - 2156-2202. ; 108:D19
  • Forskningsöversikt (refereegranskat)abstract
    • [1] A unified scheme to assign pollen samples to vegetation types was used to reconstruct vegetation patterns north of 55degreesN at the last glacial maximum (LGM) and mid-Holocene (6000 years B. P.). The pollen data set assembled for this purpose represents a comprehensive compilation based on the work of many projects and research groups. Five tundra types (cushion forb tundra, graminoid and forb tundra, prostrate dwarf-shrub tundra, erect dwarf-shrub tundra, and low- and high-shrub tundra) were distinguished and mapped on the basis of modern pollen surface samples. The tundra-forest boundary and the distributions of boreal and temperate forest types today were realistically reconstructed. During the mid-Holocene the tundra-forest boundary was north of its present position in some regions, but the pattern of this shift was strongly asymmetrical around the pole, with the largest northward shift in central Siberia (similar to200 km), little change in Beringia, and a southward shift in Keewatin and Labrador (similar to200 km). Low- and high-shrub tundra extended farther north than today. At the LGM, forests were absent from high latitudes. Graminoid and forb tundra abutted on temperate steppe in northwestern Eurasia while prostrate dwarf-shrub, erect dwarf-shrub, and graminoid and forb tundra formed a mosaic in Beringia. Graminoid and forb tundra is restricted today and does not form a large continuous biome, but the pollen data show that it was far more extensive at the LGM, while low- and high-shrub tundra were greatly reduced, illustrating the potential for climate change to dramatically alter the relative areas occupied by different vegetation types.
  •  
2.
  • Chaufray, J. Y., et al. (författare)
  • Mars solar wind interaction : Formation of the Martian corona and atmospheric loss to space
  • 2007
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 112:E9, s. E09009-
  • Forskningsöversikt (refereegranskat)abstract
    • A three- dimensional ( 3- D) atomic oxygen corona of Mars is computed for periods of low and high solar activities. The thermal atomic oxygen corona is derived from a collisionless Chamberlain approach, whereas the nonthermal atomic oxygen corona is derived from Monte Carlo simulations. The two main sources of hot exospheric oxygen atoms at Mars are the dissociative recombination of O-2(+) between 120 and 300 km and the sputtering of the Martian atmosphere by incident O+ pickup ions. The reimpacting and escaping fluxes of pickup ions are derived from a 3- D hybrid model describing the interaction of the solar wind with our computed Martian oxygen exosphere. In this work it is shown that the role of the sputtering crucially depends on an accurate description of the Martian corona as well as of its interaction with the solar wind. The sputtering contribution to the total oxygen escape is smaller by one order of magnitude than the contribution due to the dissociative recombination. The neutral escape is dominant at both solar activities ( 1 x 10(25) s(-1) for low solar activity and 4 x 10(25) s(-1) for high solar activity), and the ion escape flux is estimated to be equal to 2 x 10(23) s(-1) at low solar activity and to 3.4 x 10(24) s(-1) at high solar activity. This work illustrates one more time the strong dependency of these loss rates on solar conditions. It underlines the difficulty of extrapolating the present measured loss rates to the past solar conditions without a better theoretical and observational knowledge of this dependency.
  •  
3.
  •  
4.
  • Kergoat, Laurent, et al. (författare)
  • Nitrogen controls plant canopy light-use efficiency in temperate and boreal ecosystems
  • 2008
  • Ingår i: Journal of Geophysical Research. - 2156-2202. ; 113:G4, s. 04017-04017
  • Forskningsöversikt (refereegranskat)abstract
    • Optimum daily light-use efficiency (LUE) and normalized canopy photosynthesis (GEE*) rate, a proxy for LUE, have been derived from eddy covariance CO2 flux measurements obtained at a range of sites located in the mid to high latitudes. These two variables were analyzed with respect to environmental conditions, plant functional types (PFT) and leaf nitrogen concentration, in an attempt to characterize their variability and their potential drivers. LUE averaged 0.0182 mol/mol with a coefficient of variation of 37% (42% for GEE*). Foliar nitrogen N of the dominant plant species was found to explain 71% of LUE (n = 26) and 62% of GEE* (n = 44) variance, across all PFTs and sites. Mean Annual Temperature, MAT, explained 27% of LUE variance, and the two factors (MAT and N) combined in a simple linear model explain 80% of LUE and 76% GEE* variance. These results showed that plant canopies in the temperate, boreal and arctic zones fit into a general scheme closely related to the one, which had been established for plant leaves worldwide. The N-MAT- LUE relationships offer perspectives for LUE-based models of terrestrial photosynthesis based on remote sensing. On a continental scale, the decrease of LUE from the temperate to the arctic zone found in the data derived from flux measurements is not in line with LUE resulting from inversion of atmospheric CO2.
  •  
5.
  • Tomasi, C., et al. (författare)
  • Aerosols in polar regions : A historical overview based on optical depth and in situ observations
  • 2007
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 112:D16, s. D16205-
  • Forskningsöversikt (refereegranskat)abstract
    • Large sets of filtered actinometer, filtered pyrheliometer and Sun photometer measurements have been carried out over the past 30 years by various groups at different Arctic and Antarctic sites and for different time periods. They were examined to estimate ensemble average, long-term trends of the summer background aerosol optical depth AOD(500 nm) in the polar regions ( omitting the data influenced by Arctic haze and volcanic eruptions). The trend for the Arctic was estimated to be between -1.6% and -2.0% per year over 30 years, depending on location. No significant trend was observed for Antarctica. The time patterns of AOD( 500 nm) and angstrom ngstrom's parameters a and beta measured with Sun photometers during the last 20 years at various Arctic and Antarctic sites are also presented. They give a measure of the large variations of these parameters due to El Chichon, Pinatubo, and Cerro Hudson volcanic particles, Arctic haze episodes most frequent in winter and spring, and the transport of Asian dust and boreal smokes to the Arctic region. Evidence is also shown of marked differences between the aerosol optical parameters measured at coastal and high-altitude sites in Antarctica. In situ optical and chemical composition parameters of aerosol particles measured at Arctic and Antarctic sites are also examined to achieve more complete information on the multimodal size distribution shape parameters and their radiative properties. A characterization of aerosol radiative parameters is also defined by plotting the daily mean values of a as a function of AOD( 500 nm), separately for the two polar regions, allowing the identification of different clusters related to fifteen aerosol classes, for which the spectral values of complex refractive index and single scattering albedo were evaluated.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy