SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:2156 2202 ;pers:(Wahlund Jan Erik)"

Sökning: L773:2156 2202 > Wahlund Jan Erik

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cravens, T. E., et al. (författare)
  • Dynamical and magnetic field time constants for Titan's ionosphere : Empirical estimates and comparisons with Venus
  • 2010
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 115:8, s. A08319-
  • Tidskriftsartikel (refereegranskat)abstract
    • Plasma in Titan's ionosphere flows in response to forcing from thermal pressure gradients, magnetic forces, gravity, and ion-neutral collisions. This paper takes an empirical approach to the ionospheric dynamics by using data from Cassini instruments to estimate pressures, flow speeds, and time constants on the dayside and nightside. The plasma flow speed relative to the neutral gas speed is approximately 1 m s(-1) near an altitude of 1000 km and 200 m s(-1) at 1500 km. For comparison, the thermospheric neutral wind speed is about 100 m s(-1). The ionospheric plasma is strongly coupled to the neutrals below an altitude of about 1300 km. Transport, vertical or horizontal, becomes more important than chemistry in controlling ionospheric densities above about 1200-1500 km, depending on the ion species. Empirical estimates are used to demonstrate that the structure of the ionospheric magnetic field is determined by plasma transport (including neutral wind effects) for altitudes above about 1000 km and by magnetic diffusion at lower altitudes. The paper suggests that a velocity shear layer near 1300 km could exist at some locations and could affect the structure of the magnetic field. Both Hall and polarization electric field terms in the magnetic induction equation are shown to be locally important in controlling the structure of Titan's ionospheric magnetic field. Comparisons are made between the ionospheric dynamics at Titan and at Venus.
  •  
2.
  • Cui, J., et al. (författare)
  • Diurnal variations of Titan's ionosphere
  • 2009
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 114:6, s. A06310-
  • Tidskriftsartikel (refereegranskat)abstract
    • We present our analysis of the diurnal variations of Titan's ionosphere (between 1000 and 1300 km) based on a sample of Ion Neutral Mass Spectrometer (INMS) measurements in the Open Source Ion (OSI) mode obtained from eight close encounters of the Cassini spacecraft with Titan. Although there is an overall ion depletion well beyond the terminator, the ion content on Titan's nightside is still appreciable, with a density plateau of similar to 700 cm(-3) below similar to 1300 km. Such a plateau is a combined result of significant depletion of light ions and modest depletion of heavy ones on Titan's nightside. We propose that the distinctions between the diurnal variations of light and heavy ions are associated with their different chemical loss pathways, with the former primarily through "fast'' ion-neutral chemistry and the latter through "slow'' electron dissociative recombination. The strong correlation between the observed night-to-day ion density ratios and the associated ion lifetimes suggests a scenario in which the ions created on Titan's dayside may survive well to the nightside. The observed asymmetry between the dawn and dusk ion density profiles also supports such an interpretation. We construct a time-dependent ion chemistry model to investigate the effect of ion survival associated with solid body rotation alone as well as superrotating horizontal winds. For long-lived ions, the predicted diurnal variations have similar general characteristics to those observed. However, for short-lived ions, the model densities on the nightside are significantly lower than the observed values. This implies that electron precipitation from Saturn's magnetosphere may be an additional and important contributor to the densities of the short-lived ions observed on Titan's nightside.
  •  
3.
  • Cui, J., et al. (författare)
  • Ion transport in Titan's upper atmosphere
  • 2010
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 115, s. A06314-
  • Tidskriftsartikel (refereegranskat)abstract
    • Based on a combined Cassini data set including Ion Neutral Mass Spectrometer, Radio Plasma Wave Science, and Magnetometer measurements made during nine close encounters of the Cassini spacecraft with Titan, we investigate the electron ( or total ion) distribution in the upper ionosphere of the satellite between 1250 and 1600 km. A comparison of the measured electron distribution with that in diffusive equilibrium suggests global ion escape from Titan with a total ion loss rate of similar to(1.7 +/- 0.4) x 10(25) s(-1). Significant diurnal variation in ion transport is implied by the data, characterized by ion outflow at the dayside and ion inflow at the nightside, especially below similar to 1400 km. This is interpreted as a result of day-to-night ion transport, with a horizontal transport rate estimated to be similar to(1.4 +/- 0.5) x 10(24) s(-1). Such an ion flow is likely to be an important source for Titan's nightside ionosphere, as proposed in Cui et al. [2009a].
  •  
4.
  • Galand, Marina, et al. (författare)
  • Ionization sources in Titan's deep ionosphere
  • 2010
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 115, s. A07312-
  • Tidskriftsartikel (refereegranskat)abstract
    • We analyze a multi-instrumental data set from four Titan encounters by the Cassini spacecraft to investigate in detail the formation of the ionosphere. The data set includes observations of thermospheric and ionospheric species and suprathermal electrons. A model describing the solar and electron energy deposition is used as an organizing element of the Cassini data set. We first compare the calculated secondary electron production rates with the rates inferred from suprathermal electron intensity measurements. We then calculate an effective electron dissociative recombination coefficient, applying three different approaches to the Cassini data set. Our findings are threefold: (1) The effective recombination coefficient derived under sunlit conditions in the deep ionosphere (< 1200 km) is found to be independent of solar zenith angle and flyby. Its value ranges from 6.9 x 10(-7) cm(3) s(-1) at 1200 km to 5.9 x 10(-6) cm(3) s(-1) at 970 km at 500 K. (2) The presence of an additional, minor source of ionization is revealed when the solar contribution is weak enough. The contribution by this non-solar source-energetic electrons most probably of magnetospheric origin-becomes apparent for secondary electron production rates, due to solar illumination alone, close to or smaller than about 3 x 10(-1) cm(-3) s(-1). Such a threshold is reached near the solar terminator below the main solar-driven electron production peak (< 1050 km). (3) Our ability to model the electron density in the deep ionosphere is very limited. Our findings highlight the need for more laboratory measurements of electron dissociative recombination coefficients for heavy ion species at high electron temperatures (especially near 500 K).
  •  
5.
  • Garnier, P., et al. (författare)
  • The detection of energetic electrons with the Cassini Langmuir probe at Saturn
  • 2012
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 117, s. A10202-
  • Tidskriftsartikel (refereegranskat)abstract
    • The Cassini Langmuir probe, part of the Radio and Plasma Wave Science (RPWS) instrument, has provided a wealth of information about the cold and dense plasma in the Saturnian system. The analysis of the ion side current (current for negative potentials) measured by the probe from 2005 to 2008 reveals also a strong sensitivity to energetic electrons (250-450 eV). These electrons impact the surface of the probe, and generate a detectable current of secondary electrons. A broad secondary electrons current region is inferred from the observations in the dipole L Shell range of similar to 6-10, with a peak full width at half maximum (FWHM) at L = 6.4-9.4 (near the Dione and Rhea magnetic dipole L Shell values). This magnetospheric flux tube region, which displays a large day/night asymmetry, is related to the similar structure in the energetic electron fluxes as the one measured by the onboard Electron Spectrometer (ELS) of the Cassini Plasma Spectrometer (CAPS). It corresponds spatially to both the outer electron radiation belt observed by the Magnetosphere Imaging Instrument (MIMI) at high energies and to the low-energy peak which has been observed since the Voyager era. Finally, a case study suggests that the mapping of the current measured by the Langmuir probe for negative potentials can allow to identify the plasmapause-like boundary recently identified at Saturn, and thus potentially identify the separation between the closed and open magnetic field lines regions.
  •  
6.
  • Garnier, P., et al. (författare)
  • The lower exosphere of Titan : Energetic neutral atoms absorption and imaging
  • 2008
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 113:A10, s. A10216-
  • Tidskriftsartikel (refereegranskat)abstract
    • The Saturn magnetosphere interacts with the Titan atmosphere through various mechanisms. One of them leads, by charge exchange reactions between the energetic Saturnian ions and the exospheric neutrals of Titan, to the production of energetic neutral atoms (ENAs). The Ion and Neutral Camera (INCA), one of the three sensors that comprise the Magnetosphere Imaging Instrument (MIMI) on the Cassini/Huygens mission to Saturn and Titan, images the ENA emissions in the Saturnian magnetosphere. This study focuses on the ENA imaging of Titan (for 20-50 keV H ENAs), with the example of the Ta Titan flyby (26 October 2004): our objective is to understand the positioning of the ENA halo observed around Titan. Thus we investigate the main ENA loss mechanisms, such as the finite gyroradii effects for the parent ions, or the charge stripping with exospheric neutrals. We show that multiple stripping and charge exchange reactions have to be taken into account to understand the ENA dynamics. The use of an analytical approach, taking into account these reactions, combined with a reprocessing of the INCA data, allows us to reproduce the ENA images of the Ta flyby and indicates a lower limit for ENA emission around the exobase. However, the dynamics of energetic particle through the Titan atmosphere remains complex, with an inconsistency between the ENA imaging at low and high altitudes.
  •  
7.
  • Hill, T. W., et al. (författare)
  • Charged nanograins in the Enceladus plume
  • 2012
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 117, s. A05209-
  • Tidskriftsartikel (refereegranskat)abstract
    • There have been three Cassini encounters with the south-pole eruptive plume of Enceladus for which the Cassini Plasma Spectrometer (CAPS) had viewing in the spacecraft ram direction. In each case, CAPS detected a cold dense population of heavy charged particles having mass-to-charge (m/q) ratios up to the maximum detectable by CAPS (similar to 10(4) amu/e). These particles are interpreted as singly charged nanometer-sized water-ice grains. Although they are detected with both negative and positive net charges, the former greatly outnumber the latter, at least in the m/q range accessible to CAPS. On the most distant available encounter (E3, March 2008) we derive a net (negative) charge density of up to similar to 2600 e/cm(3) for nanograins, far exceeding the ambient plasma number density, but less than the net (positive) charge density inferred from the RPWS Langmuir probe data during the same plume encounter. Comparison of the CAPS data from the three available encounters is consistent with the idea that the nanograins leave the surface vents largely uncharged, but become increasingly negatively charged by plasma electron impact as they move farther from the satellite. These nanograins provide a potentially potent source of magnetospheric plasma and E-ring material.
  •  
8.
  • Ma, Y. J., et al. (författare)
  • The importance of thermal electron heating in Titan's ionosphere : Comparison with Cassini T34 flyby
  • 2011
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 116, s. A10213-
  • Tidskriftsartikel (refereegranskat)abstract
    • We use a new magnetohydrodynamic (MHD) model to study the effects of thermal-electron heating in Titan's ionosphere. This model improves the previously used multispecies MHD model by solving both the electron and ion pressure equations instead of a single plasma pressure equation. This improvement enables a more accurate evaluation of ion and electron temperatures inside Titan's ionosphere. The model is first applied to an idealized case, and the results are compared in detail with those of the single-pressure MHD model to illustrate the effects of the improvement. Simulation results show that the dayside ionosphere thermal pressure is larger than the upstream pressure during normal conditions, when Titan is located in the dusk region; thus Saturn's magnetic field is shielded by the highly conducting ionosphere, similar to the interaction of Venus during solar maximum conditions. This model is also applied to a special flyby of Titan, the T34 flyby, which occurred near the dusk region. It is shown that better agreement with the magnetometer data can be achieved using the two-fluid MHD model with the inclusion of the effects of thermal electron heating. The model results clearly demonstrate the importance of thermal-electron heating in Titan's ionosphere.
  •  
9.
  • Ma, Y. J., et al. (författare)
  • Time-dependent global MHD simulations of Cassini T32 flyby : From magnetosphere to magnetosheath
  • 2009
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 114:3, s. A03204-
  • Tidskriftsartikel (refereegranskat)abstract
    • When the Cassini spacecraft flew by Titan on 13 June 2007, at 13.6 Saturn local time, Titan was directly observed to be outside Saturn's magnetopause. Cassini observations showed dramatic changes of magnetic field orientation as well as other plasma flow parameters during the inbound and outbound segments. In this paper, we study Titan's ionospheric responses to such a sudden change in the upstream plasma conditions using a sophisticated multispecies global MHD model. Simulation results of three different cases (steady state, simple current sheet crossing, and magnetopause crossing) are presented and compared against Cassini Magnetometer, Langmuir Probe, and Cassini Plasma Spectrometer observations. The simulation results provide clear evidence for the existence of a fossil field that was induced in the ionosphere. The main interaction features, as observed by the Cassini spacecraft, are well reproduced by the time-dependent simulation cases. Simulation also reveals how the fossil field was trapped during the interaction and shows the coexistence of two pileup regions with opposite magnetic orientation, as well as the formation of a pair of new Alfven wings and tail disconnection during the magnetopause crossing process.
  •  
10.
  • Mandt, Kathleen E., et al. (författare)
  • Ion densities and composition of Titan's upper atmosphere derived from the Cassini Ion Neutral Mass Spectrometer : Analysis methods and comparison of measured ion densities to photochemical model simulations
  • 2012
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 117, s. E10006-
  • Tidskriftsartikel (refereegranskat)abstract
    • The Cassini Ion Neutral Mass Spectrometer (INMS) has measured both neutral and ion species in Titan's upper atmosphere and ionosphere and the Enceladus plumes. Ion densities derived from INMS measurements are essential data for constraining photochemical models of Titan's ionosphere. The objective of this paper is to present an optimized method for converting raw data measured by INMS to ion densities. To do this, we conduct a detailed analysis of ground and in-flight calibration to constrain the instrument response to ion energy, the critical parameter on which the calibration is based. Data taken by the Cassini Radio Plasma Wave Science Langmuir Probe and the Cassini Plasma Spectrometer Ion Beam Spectrometer are used as independent measurement constraints in this analysis. Total ion densities derived with this method show good agreement with these data sets in the altitude region (similar to 1100-1400 km) where ion drift velocities are low and the mass of the ions is within the measurement range of the INMS (1-99 Daltons). Although ion densities calculated by the method presented here differ slightly from those presented in previous INMS publications, we find that the implications for the science presented in previous publications is mostly negligible. We demonstrate the role of the INMS ion densities in constraining photochemical models and find that (1) cross sections having high resolution as a function of wavelength are necessary for calculating the initial photoionization products and (2) there are disagreements between the measured ion densities representative of the initial steps in Titan photochemistry that require further investigation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy