SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:2158 3188 ;pers:(Landén Mikael 1966)"

Sökning: L773:2158 3188 > Landén Mikael 1966

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Brundin, L., et al. (författare)
  • An enzyme in the kynurenine pathway that governs vulnerability to suicidal behavior by regulating excitotoxicity and neuroinflammation
  • 2016
  • Ingår i: Translational Psychiatry. - : Springer Science and Business Media LLC. - 2158-3188. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Emerging evidence suggests that inflammation has a key role in depression and suicidal behavior. The kynurenine pathway is involved in neuroinflammation and regulates glutamate neurotransmission. In the cerebrospinal fluid (CSF) of suicidal patients, levels of inflammatory cytokines and the kynurenine metabolite quinolinic acid (QUIN), an N-methyl-D-aspartate receptor agonist, are increased. The enzyme amino-beta-carboxymuconate-semialdehyde-decarboxylase (ACMSD) limits QUIN formation by competitive production of the neuroprotective metabolite picolinic acid (PIC). Therefore, decreased ACMSD activity can lead to excess QUIN. We tested the hypothesis that deficient ACMSD activity underlies suicidal behavior. We measured PIC and QUIN in CSF and plasma samples from 137 patients exhibiting suicidal behavior and 71 healthy controls. We used DSM-IV and the Montgomery-Asberg Depression Rating Scale and Suicide Assessment Scale to assess behavioral changes. Finally, we genotyped ACMSD tag single nucleotide polymorphisms (SNPs) in 77 of the patients and 150 population-based controls. Suicide attempters had reduced PIC and a decreased PIC/QUIN ratio in both CSF (P<0.001) and blood (P=0.001 and P<0.01, respectively). The reductions of PIC in CSF were sustained over 2 years after the suicide attempt based on repeated measures. The minor C allele of the ACMSD SNP rs2121337 was more prevalent in suicide attempters and associated with increased CSF QUIN. Taken together, our data suggest that increased QUIN levels may result from reduced activity of ACMSD in suicidal subjects. We conclude that measures of kynurenine metabolites can be explored as biomarkers of suicide risk, and that ACMSD is a potential therapeutic target in suicidal behavior.
  •  
2.
  • Charney, A. W., et al. (författare)
  • Evidence for genetic heterogeneity between clinical subtypes of bipolar disorder
  • 2017
  • Ingår i: Translational Psychiatry. - : Springer Science and Business Media LLC. - 2158-3188. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We performed a genome-wide association study of 6447 bipolar disorder (BD) cases and 12 639 controls from the International Cohort Collection for Bipolar Disorder (ICCBD). Meta-analysis was performed with prior results from the Psychiatric Genomics Consortium Bipolar Disorder Working Group for a combined sample of 13 902 cases and 19 279 controls. We identified eight genome-wide significant, associated regions, including a novel associated region on chromosome 10 (rs10884920; P = 3.28 x 10(-8)) that includes the brain-enriched cytoskeleton protein adducin 3 (ADD3), a non-coding RNA, and a neuropeptide-specific aminopeptidase P (XPNPEP1). Our large sample size allowed us to test the heritability and genetic correlation of BD subtypes and investigate their genetic overlap with schizophrenia and major depressive disorder. We found a significant difference in heritability of the two most common forms of BD (BD I SNP-h(2) = 0.35; BD II SNP-h(2) = 0.25; P = 0.02). The genetic correlation between BD I and BD II was 0.78, whereas the genetic correlation was 0.97 when BD cohorts containing both types were compared. In addition, we demonstrated a significantly greater load of polygenic risk alleles for schizophrenia and BD in patients with BD I compared with patients with BD II, and a greater load of schizophrenia risk alleles in patients with the bipolar type of schizoaffective disorder compared with patients with either BD I or BD II. These results point to a partial difference in the genetic architecture of BD subtypes as currently defined.
  •  
3.
  • Chen, C. Y., et al. (författare)
  • Genetic validation of bipolar disorder identified by automated phenotyping using electronic health records
  • 2018
  • Ingår i: Translational Psychiatry. - : Springer Science and Business Media LLC. - 2158-3188. ; 8:1, s. 1-8
  • Tidskriftsartikel (refereegranskat)abstract
    • Bipolar disorder (BD) is a heritable mood disorder characterized by episodes of mania and depression. Although genomewide association studies (GWAS) have successfully identified genetic loci contributing to BD risk, sample size has become a rate-limiting obstacle to genetic discovery. Electronic health records (EHRs) represent a vast but relatively untapped resource for high-throughput phenotyping. As part of the International Cohort Collection for Bipolar Disorder (ICCBD), we previously validated automated EHR-based phenotyping algorithms for BD against in-person diagnostic interviews (Castro et al. Am J Psychiatry 172:363-372, 2015). Here, we establish the genetic validity of these phenotypes by determining their genetic correlation with traditionally ascertained samples. Case and control algorithms were derived from structured and narrative text in the Partners Healthcare system comprising more than 4.6 million patients over 20 years. Genomewide genotype data for 3330 BD cases and 3952 controls of European ancestry were used to estimate SNP-based heritability (h 2 g) and genetic correlation (r g) between EHR-based phenotype definitions and traditionally ascertained BD cases in GWAS by the ICCBD and Psychiatric Genomics Consortium (PGC) using LD score regression. We evaluated BD cases identified using 4 EHR-based algorithms: an NLP-based algorithm (95-NLP) and three rule-based algorithms using codified EHR with decreasing levels of stringency-"coded-strict", "coded-broad", and "coded-broad based on a single clinical encounter" (coded-broad-SV). The analytic sample comprised 862 95-NLP, 1968 coded-strict, 2581 coded-broad, 408 coded-broad-SV BD cases, and 3 952 controls. The estimated h 2 g were 0.24 (p = 0.015), 0.09 (p = 0.064), 0.13 (p = 0.003), 0.00 (p = 0.591) for 95-NLP, coded-strict, coded-broad and coded-broad-SV BD, respectively. The h 2 g for all EHR-based cases combined except coded-broad-SV (excluded due to 0 h 2 g) was 0.12 (p = 0.004). These h 2 g were lower or similar to the h 2 g observed by the ICCBD + PGCBD (0.23, p = 3.17E-80, total N = 33,181). However, the r g between ICCBD + PGCBD and the EHR-based cases were high for 95-NLP (0.66, p = 3.69 × 10-5), coded-strict (1.00, p = 2.40 × 10-4), and coded-broad (0.74, p = 8.11 × 10-7). The r g between EHR-based BD definitions ranged from 0.90 to 0.98. These results provide the first genetic validation of automated EHR-based phenotyping for BD and suggest that this approach identifies cases that are highly genetically correlated with those ascertained through conventional methods. High throughput phenotyping using the large data resources available in EHRs represents a viable method for accelerating psychiatric genetic research.
  •  
4.
  • Göteson, Andreas, 1991, et al. (författare)
  • A serum proteomic study of two case-control cohorts identifies novel biomarkers for bipolar disorder
  • 2022
  • Ingår i: Translational Psychiatry. - : Springer Science and Business Media LLC. - 2158-3188. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We set out to identify novel protein associations with potential as clinically viable biomarkers for bipolar disorder. To this end, we used proximity extension assay to analyze 201 unique proteins in blood serum from two independent cohorts comprising patients with bipolar disorder and healthy controls (total n = 493). We identified 32 proteins significantly associated with bipolar disorder in both case-control cohorts after adjusting for relevant covariates. Twenty-two findings are novel to bipolar disorder, but 10 proteins have previously been associated with bipolar disorder: chitinase-3-like protein 1, C-C motif chemokine 3 (CCL3), CCL4, CCL20, CCL25, interleukin 10, growth/differentiation factor-15, matrilysin (MMP-7), pro-adrenomedullin, and TNF-R1. Next, we estimated the variance in serum protein concentrations explained by psychiatric drugs and found that some case-control associations may have been driven by psychiatric drugs. The highest variance explained was observed between lithium use and MMP-7, and in post-hoc analyses and found that the serum concentration of MMP-7 was positively associated with serum lithium concentration, duration of lithium therapy, and inversely associated with estimated glomerular filtration rate in an interaction with lithium. This is noteworthy given that MMP-7 has been suggested as a mediator of renal tubulointerstitial fibrosis, which is characteristic of lithium-induced nephropathy. Finally, we used machine learning to evaluate the classification performance of the studied biomarkers but the average performance in unseen data was fair to moderate (area under the receiver operating curve = 0.72). Taken together, our serum biomarker findings provide novel insight to the etiopathology of bipolar disorder, and we present a suggestive biomarker for lithium-induced nephropathy. © 2022, The Author(s).
  •  
5.
  • Hughes, T., et al. (författare)
  • Elevated expression of a minor isoform of ANK3 is a risk factor for bipolar disorder
  • 2018
  • Ingår i: Translational Psychiatry. - : Springer Science and Business Media LLC. - 2158-3188. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Ankyrin-3 (ANK3) is one of the few genes that have been consistently identified as associated with bipolar disorder by multiple genome-wide association studies. However, the exact molecular basis of the association remains unknown. A rare loss-of-function splice-site SNP (rs41283526*G) in a minor isoform of ANK3 (incorporating exon ENSE00001786716) was recently identified as protective of bipolar disorder and schizophrenia. This suggests that an elevated expression of this isoform may be involved in the etiology of the disorders. In this study, we used novel approaches and data sets to test this hypothesis. First, we strengthen the statistical evidence supporting the allelic association by replicating the protective effect of the minor allele of rs41283526 in three additional large independent samples (meta-analysis pvalues: 6.8E-05 for bipolar disorder and 8.2E-04 for schizophrenia). Second, we confirm the hypothesis that both bipolar and schizophrenia patients have a significantly higher expression of this isoform than controls (p-values: 3.3E-05 for schizophrenia and 9.8E-04 for bipolar type I). Third, we determine the transcription start site for this minor isoform by Pacific Biosciences sequencing of full-length cDNA and show that it is primarily expressed in the corpus callosum. Finally, we combine genotype and expression data from a large Norwegian sample of psychiatric patients and controls, and show that the risk alleles in ANK3 identified by bipolar disorder GWAS are located near the transcription start site of this isoform and are significantly associated with its elevated expression. Together, these results point to the likely molecular mechanism underlying ANK3's association with bipolar disorder.
  •  
6.
  • Johansson, Therese, et al. (författare)
  • Polygenic association with severity and long-term outcome in eating disorder cases
  • 2022
  • Ingår i: Translational Psychiatry. - : Springer Science and Business Media LLC. - 2158-3188. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • About 20% of individuals with anorexia nervosa (AN) remain chronically ill. Therefore, early identification of poor outcome could improve care. Genetic research has identified regions of the genome associated with AN. Patients with anorexia nervosa were identified via the Swedish eating disorder quality registers Stepwise and Riksat and invited to participate in the Anorexia Nervosa Genetics Initiative. First, we associated genetic information longitudinally with eating disorder severity indexed by scores on the Clinical Impairment Assessment (CIA) in 2843 patients with lifetime AN with or without diagnostic migration to other forms of eating disorders followed for up to 16 years (mean = 5.3 years). Second, we indexed the development of a severe and enduring eating disorder (SEED) by a high CIA score plus a follow-up time >= 5 years. We associated individual polygenic scores (PGSs) indexing polygenic liability for AN, schizophrenia, and body mass index (BMI) with severity and SEED. After multiple testing correction, only the BMI PGS when calculated with traditional clumping and p value thresholding was robustly associated with disorder severity (beta(PGS) = 1.30; 95% CI: 0.72, 1.88; p = 1.2 x 10(-5)) across all p value thresholds at which we generated the PGS. However, using the alternative PGS calculation method PRS-CS yielded inconsistent results for all PGS. The positive association stands in contrast to the negative genetic correlation between BMI and AN. Larger discovery GWASs to calculate PGS will increase power, and it is essential to increase sample sizes of the AN GWASs to generate clinically meaningful PGS as adjunct risk prediction variables. Nevertheless, this study provides the first evidence of potential clinical utility of PGSs for eating disorders.
  •  
7.
  • Lopes, F. L., et al. (författare)
  • Polygenic risk for anxiety influences anxiety comorbidity and suicidal behavior in bipolar disorder
  • 2020
  • Ingår i: Translational Psychiatry. - : Springer Science and Business Media LLC. - 2158-3188. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Bipolar disorder is often comorbid with anxiety, which is itself associated with poorer clinical outcomes, including suicide. A better etiologic understanding of this comorbidity could inform diagnosis and treatment. The present study aims to test whether comorbid anxiety in bipolar disorder reflects shared genetic risk factors. We also sought to assess the contribution of genetic risk for anxiety to suicide attempts in bipolar disorder. Polygenic risk scores (PRS) were calculated from published genome-wide association studies of samples of controls and cases with anxiety (n = 83,566) or bipolar disorder (n = 51,710), then scored in independent target samples (totaln = 3369) of individuals with bipolar disorder who reported or denied lifetime anxiety disorders or suicidal attempts in research interviews. Participants were recruited from clinical and nonclinical settings and genotyped for common genetic variants. The results show that polygenic risk for anxiety was associated with comorbid anxiety disorders and suicide attempts in bipolar disorder, while polygenic risk for bipolar disorder was not associated with any of these variables. Our findings point out that comorbid anxiety disorders in bipolar disorder reflect a dual burden of bipolar and anxiety-related genes; the latter may also contribute to suicide attempts. Clinical care that recognizes and addresses this dual burden may help improve outcomes in people living with comorbid bipolar and anxiety disorders.
  •  
8.
  • Nilsson, I. A. K., et al. (författare)
  • Plasma neurofilament light chain concentration is increased in anorexia nervosa
  • 2019
  • Ingår i: Translational Psychiatry. - : Springer Science and Business Media LLC. - 2158-3188. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Anorexia nervosa (AN) is a severe psychiatric disorder with high mortality and, to a large extent, unknown pathophysiology. Structural brain differences, such as global or focal reductions in grey or white matter volumes, as well as enlargement of the sulci and the ventricles, have repeatedly been observed in individuals with AN. However, many of the documented aberrances normalize with weight recovery, even though some studies show enduring changes. To further explore whether AN is associated with neuronal damage, we analysed the levels of neurofilament light chain (NfL), a marker reflecting ongoing neuronal injury, in plasma samples from females with AN, females recovered from AN (AN-REC) and normal-weight age-matched female controls (CTRLS). We detected significantly increased plasma levels of NfL in AN vs CTRLS (median(AN) = 15.6 pg/ml, IQR(AN) = 12.1-21.3, median(CTRL) = 9.3 pg/ml, IQR(CTRL) = 6.4-12.9, and p < 0.0001), AN vs AN-REC (median(AN-REC) = 11.1 pg/ml, IQR(AN-REC) = 8.6-15.5, and p < 0.0001), and AN-REC vs CTRLS (p = 0.004). The plasma levels of NfL are negatively associated with BMI overall samples (beta (+/- se) = -0.62 +/- 0.087 and p = 6.9. 10(-12)). This indicates that AN is associated with neuronal damage that partially normalizes with weight recovery. Further studies are needed to determine which brain areas are affected, and potential long-term sequelae.
  •  
9.
  • Ou, Anna H., et al. (författare)
  • Lithium response in bipolar disorder is associated with focal adhesion and PI3K-Akt networks: a multi-omics replication study
  • 2024
  • Ingår i: TRANSLATIONAL PSYCHIATRY. - 2158-3188. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Lithium is the gold standard treatment for bipolar disorder (BD). However, its mechanism of action is incompletely understood, and prediction of treatment outcomes is limited. In our previous multi-omics study of the Pharmacogenomics of Bipolar Disorder (PGBD) sample combining transcriptomic and genomic data, we found that focal adhesion, the extracellular matrix (ECM), and PI3K-Akt signaling networks were associated with response to lithium. In this study, we replicated the results of our previous study using network propagation methods in a genome-wide association study of an independent sample of 2039 patients from the International Consortium on Lithium Genetics (ConLiGen) study. We identified functional enrichment in focal adhesion and PI3K-Akt pathways, but we did not find an association with the ECM pathway. Our results suggest that deficits in the neuronal growth cone and PI3K-Akt signaling, but not in ECM proteins, may influence response to lithium in BD.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy