SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0012 1797 OR L773:1939 327X srt2:(2000-2004);srt2:(2000)"

Sökning: L773:0012 1797 OR L773:1939 327X > (2000-2004) > (2000)

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Barg, Sebastian, et al. (författare)
  • Tight coupling between electrical activity and exocytosis in mouse glucagon-secreting alpha-cells
  • 2000
  • Ingår i: Diabetes. - 1939-327X .- 0012-1797. ; 49:9, s. 1500-1510
  • Tidskriftsartikel (refereegranskat)abstract
    • alpha-Cells were identified in preparations of dispersed mouse islets by immunofluorescence microscopy. A high fraction of alpha-cells correlated with a small cell size measured as the average cell diameter (10 microm) and whole-cell capacitance (<4 pF). The alpha-cells generated action potentials at a low frequency (1 Hz) in the absence of glucose. These action potentials were reversibly inhibited by elevation of the glucose concentration to 20 mmol/l. The action potentials originated from a membrane potential more negative than -50 mV, had a maximal upstroke velocity of 5 V/s, and peaked at +1 mV. Voltage-clamp experiments revealed the ionic conductances underlying the generation of action potentials. alpha-Cells are equipped with a delayed tetraethyl-ammonium-blockable outward current (activating at voltages above -20 mV), a large tetrodotoxin-sensitive Na+ current (above -30 mV; peak current 200 pA at +10 mV), and a small Ca2+ current (above -50 mV; peak current 30 pA at +10 mV). The latter flowed through omega-conotoxin GVIA (25%)- and nifedipine-sensitive (50%) Ca(2+)-channels. Mouse alpha-cells contained, on average, 7,300 granules, which undergo Ca(2+)-induced exocytosis when the alpha-cell is depolarized. Three functional subsets of granules were identified, and the size of the immediately releasable pool was estimated as 80 granules, or 1% of the total granule number. The maximal rate of exocytosis (1.5 pF/s) was observed 21 ms after the onset of the voltage-clamp depolarization, which is precisely the duration of Ca(2+)-influx during an action potential. Our results suggest that the secretory machinery of the alpha-cell is optimized for maximal efficiency in the use of Ca2+ for exocytosis.
  •  
2.
  • Bavenholm, PN, et al. (författare)
  • Fatty acid oxidation and the regulation of malonyl-CoA in human muscle
  • 2000
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 49:7, s. 1078-1083
  • Tidskriftsartikel (refereegranskat)abstract
    • Questions concerning whether malonyl-CoA is regulated in human muscle and whether malonyl-CoA modulates fatty acid oxidation are still unanswered. To address these questions, whole-body fatty acid oxidation and the concentration of malonyl-CoA, citrate, and malate were determined in the vastus lateralis muscle of 16 healthy nonobese Swedish men during a sequential euglycemic-hyperinsulinemic clamp. Insulin was infused at rates of 0.25 and 1.0 mU x kg(-1) x min(-1), and glucose was infused at rates of 2.0 +/- 0.2 and 8.1 +/- 0.7 mg x kg(-1) x min(-1), respectively. During the low-dose insulin infusion, whole-body fatty acid oxidation, as determined by indirect calorimetry, decreased by 22% from a basal rate of 0.94 +/- 0.06 to 0.74 +/- 0.07 mg x kg(-1) x min(-1) (P = 0.005), but no increase in malonyl-CoA was observed. In contrast, during the high-dose insulin infusion, malonyl-CoA increased from 0.20 +/- 0.01 to 0.24 +/- 0.01 nmol/g (P &lt; 0.001), and whole-body fatty acid oxidation decreased by an additional 41% to 0.44 +/- 0.06 mg x kg(-1) x min(-1) (P &lt; 0.001). The increase in malonyl-CoA was associated with 30-50% increases in the concentrations of citrate (102 +/- 6 vs. 137 +/- 7 nmol/g, P &lt; 0.001), an allosteric activator of the rate-limiting enzyme in the malonyl-CoA formation, acetyl-CoA carboxylase, and malate (80 +/- 6 vs. 126 +/- 9 nmol/g, P = 0.002), an antiporter for citrate efflux from the mitochondria. Significant correlations were observed between the concentration of malonyl-CoA and both glucose utilization (r = 0.53, P = 0.002) and the sum of the concentrations of citrate and malate (r = 0.52, P &lt; 0.001), a proposed index of the cytosolic concentration of citrate. In addition, an inverse correlation between malonyl-CoA concentration and fatty acid oxidation was observed (r = -0.32, P = 0.03). The results indicate that an infusion of insulin and glucose at a high rate leads to increases in the concentration of malonyl-CoA in skeletal muscle and to decreases in whole-body and, presumably, muscle fatty acid oxidation. Furthermore, they suggest that the increase in malonyl-CoA in this situation is due, at least in part, to an increase in the cytosolic concentration of citrate. Because cytosolic citrate is also an inhibitor of phosphofructokinase, an attractive hypothesis is that changes in its concentration are part of an autoregulatory mechanism by which glucose modulates its own use and the use of fatty acids as fuels for skeletal muscle.
  •  
3.
  • Bjorklund, A., et al. (författare)
  • Glucose-induced Ca2+ (i) abnormalities in human pancreatic islets - Important role of overstimulation
  • 2000
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 49:11, s. 1840-1848
  • Tidskriftsartikel (refereegranskat)abstract
    • Chronic hyperglycemia desensitizes beta -cells to glucose. To further define the mechanisms behind desensitization and the role of overstimulation, we tested human pancreatic islets for the effects of long-term elevated glucose levels on cytoplasmic free Ca2+ concentration ([Ca2+](i)) and its relationship to overstimulation. Islets were cultured for 48 h with 5.5 or 27 mmol/l glucose. Culture with 27 mmol/l glucose obliterated postculture insulin responses to 27 mmol/l glucose. This desensitization was specific for glucose versus arginine, Desensitization was accompanied by three major [Ca2+](i) abnormalities: 1) elevated basal [Ca2+](i),) loss of a glucose-induced rise in [Ca2+](i) and 3) perturbations of oscillatory activity with a decrease in glucose-induced slow oscillations (0.2-0.5 min(-1)). Coculture with 0.3 mmol/l diazoxide was performed to probe the role of overstimulation. Neither glucose nor diazoxide affected islet glucose utilization or oxidation, Coculture with diazoxide and 27 mmol/l glucose significantly (P < 0.05) restored postculture insulin responses to glucose and lowered basal [Ca2+](i) and normalized glucose-induced oscillatory activity. However, diazoxide completely failed to revive an increase in [Ca2+](i) during postculture glucose stimulation. In conclusion, desensitization of glucose-induced insulin secretion in human pancreatic islets is induced in parallel with major glucose-specific [Ca2+](i) abnormalities. Overstimulation is an important but not exclusive factor behind [Ca2+](i) abnormalities.
  •  
4.
  • Bolinder, J, et al. (författare)
  • Rates of skeletal muscle and adipose tissue glycerol release in nonobese and obese subjects
  • 2000
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 49:5, s. 797-802
  • Tidskriftsartikel (refereegranskat)abstract
    • Skeletal muscle and adipose tissue lipolysis rates were quantitatively compared in 12 healthy nonobese and 14 insulin-resistant obese subjects for 3.5 h after an oral glucose load using microdialysis measurements of interstitial glycerol concentrations and determinations of local blood flow with 133Xe clearance in the gastrocnemius muscle and in abdominal subcutaneous adipose tissue. Together with measurements of arterialized venous plasma glycerol, the absolute rates of glycerol mobilization were estimated. In the basal state, skeletal muscle and adipose tissue glycerol levels were 50% higher (P &lt; 0.05-0.01) and adipose tissue blood flow (ATBF) and muscle blood flow (MBF) rates were 30-40% lower (P &lt; 0.02-0.05) in obese versus nonobese subjects. After glucose ingestion, adipose tissue glycerol levels were rapidly and transiently reduced, whereas in muscle, a progressive and less pronounced fall in glycerol levels was evident. MBF remained unchanged in both study groups, whereas ATBF increased more markedly (P &lt; 0.01) in the nonobese versus obese subjects after the oral glucose load. The fasting rates of glycerol release per unit of tissue weight from skeletal muscle were between 20 and 25% of that from adipose tissue in both groups. After glucose ingestion, the rates of glycerol release from skeletal muscle and from adipose tissue were almost identical in nonobese and obese subjects. However, the kinetic patterns differed markedly between tissues; in adipose tissue, the rate of glycerol mobilization was suppressed by 25-30% (P &lt; 0.05) after glucose ingestion, whereas no significant reduction was registered in skeletal muscle. We conclude that significant amounts of glycerol are released from skeletal muscle, which suggests that muscle lipolysis provides an important endogenous energy source in humans. In response to glucose ingestion, the regulation of skeletal muscle glycerol release differs from that in adipose tissue; although the rate of glycerol release from adipose tissue is clearly suppressed, the rate of glycerol mobilization from skeletal muscle remains unaltered. In quantitative terms, the rate of glycerol release per unit of tissue weight in adipose tissue and in skeletal muscle is similar in nonobese and obese subjects in both the postabsorptive state and after glucose ingestion.
  •  
5.
  • Brown, H, et al. (författare)
  • Synaptotagmin III isoform is compartmentalized in pancreatic beta-cells and has a functional role in exocytosis
  • 2000
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 49:3, s. 383-391
  • Tidskriftsartikel (refereegranskat)abstract
    • Synaptotagmin is involved in Ca2+-regulated secretion and has been suggested to serve as a general Ca2+ sensor on the membrane of secretory vesicles in neuronal cells. Insulin exocytosis from the pancreatic beta-cell is an example of a Ca2+-dependent secretory process. Previous studies of pancreatic beta-cells were unable to show presence of synaptotagmin I. We now present biochemical and immunohistochemical data showing that synaptotagmin III is present in pancreatic beta-cells as well as in the insulin-secreting cell line HIT-T15 and in rat insulinoma. By subcellular fractionation, we found synaptotagmin III in high-density fractions together with insulin and secretogranin I, indicating colocalization of synaptotagmin III and insulin in secretory granules. We could also show that blockade of synaptotagmin III by a specific antibody inhibited Ca2+-induced changes in beta-cell membrane capacitance, suggesting that synaptotagmin III is part of the functional protein complex regulating beta-cell exocytosis. The synaptotagmin III antibody did not affect the activity of the voltage-gated L-type Ca2+-channel. These findings are compatible with the view that synaptotagmin III, because of its distinct localization in the pancreatic beta-cell, functionally modulates insulin exocytosis. This indicates that synaptotagmin may have a general role in the regulation of exocytosis not only in neuronal cells but also in endocrine cells.
  •  
6.
  • Cederberg, Jonas, et al. (författare)
  • Increased mRNA levels of Mn-SOD and catalase in embryos of diabetic rats from a malformation-resistant strain
  • 2000
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 49, s. 101-107
  • Tidskriftsartikel (refereegranskat)abstract
    • Previous studies have suggested that reactive oxygen species (ROS) are mediators in the teratogenic process of diabetic pregnancy. In an animal model for diabetic pregnancy, offspring of the H rat strain show minor dysmorphogenesis when the mother is diabetic, whereas the offspring of diabetic rats of a sister strain, U, display major morphologic malformations. Earlier studies have shown that embryonic catalase activity is higher in the H than in the U strain, and maternal diabetes increases this difference in activity. The aim of this study was to characterize the influence of genetic predisposition on diabetic embryopathy by comparing the mRNA levels of ROS-metabolizing enzymes in the two strains. We determined the mRNA levels of catalase, glutathione peroxidase, gamma-glutamylcystein-synthetase, glutathione reductase, and superoxide dismutase (CuZn-SOD and Mn-SOD) in day 11 embryos of normal and diabetic H and U rats using semiquantitative reverse transcription-polymerase chain reaction. The mRNA levels of catalase and Mn-SOD were increased in H embryos as a response to maternal diabetes, and no differences were found for the other genes. Sequence analysis of the catalase promoter indicated that the difference in mRNA levels may result from different regulation of transcription. Sequence analysis of the catalase cDNA revealed no differences between the two strains in the translated region, suggesting that the previously observed difference in the electrophoretic mobility in zymograms is due to posttranslational modifications. An impaired expression of scavenging enzymes in response to ROS excess can thus be an integral part of a genetic predisposition to embryonic dysmorphogenesis.
  •  
7.
  • Krook, A, et al. (författare)
  • Characterization of signal transduction and glucose transport in skeletal muscle from type 2 diabetic patients
  • 2000
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 49:2, s. 284-292
  • Tidskriftsartikel (refereegranskat)abstract
    • We characterized metabolic and mitogenic signaling pathways in isolated skeletal muscle from well-matched type 2 diabetic and control subjects. Time course studies of the insulin receptor, insulin receptor substrate (IRS)-1/2, and phosphatidylinositol (PI) 3-kinase revealed that signal transduction through this pathway was engaged between 4 and 40 min. Insulin-stimulated (0.6-60 nmol/l) tyrosine phosphorylation of the insulin receptor beta-subunit, mitogen-activated protein (MAP) kinase phosphorylation, and glycogen synthase activity were not altered in type 2 diabetic subjects. In contrast, insulin-stimulated tyrosine phosphorylation of IRS-1 and anti-phosphotyrosine-associated PI 3-kinase activity were reduced 40-55% in type 2 diabetic subjects at high insulin concentrations (2.4 and 60 nmol/l, respectively). Impaired glucose transport activity was noted at all insulin concentrations (0.6-60 nmol/l). Aberrant protein expression cannot account for these insulin-signaling defects because expression of insulin receptor, IRS-1, IRS-2, MAP kinase, or glycogen synthase was similar between type 2 diabetic and control subjects. In skeletal muscle from type 2 diabetic subjects, IRS-1 phosphorylation, PI 3-kinase activity, and glucose transport activity were impaired, whereas insulin receptor tyrosine phosphorylation, MAP kinase phosphorylation, and glycogen synthase activity were normal. Impaired insulin signal transduction in skeletal muscle from type 2 diabetic patients may partly account for reduced insulin-stimulated glucose transport; however, additional defects are likely to play a role.
  •  
8.
  • Lal, MA, et al. (författare)
  • Combined antioxidant and COMT inhibitor treatment reverses renal abnormalities in diabetic rats
  • 2000
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 49:8, s. 1381-1389
  • Tidskriftsartikel (refereegranskat)abstract
    • The development and progression of diabetic nephropathy is dependent on glucose homeostasis and many other contributing factors. In the present study, we examined the effect of nitecapone, an inhibitor of the dopamine-metabolizing enzyme catechol-O-methyl transferase (COMT) and a potent antioxidant, on functional and cellular determinants of renal function in rats with streptozotocin-induced diabetes. Administration of nitecapone to diabetic rats normalized urinary sodium excretion in a manner consistent with the dopamine-dependent inhibition of proximal tubule Na,K-ATPase activity. Hyperfiltration, focal glomerulosclerosis, and albuminuria were also reversed by nitecapone, but in a manner that is more readily attributed to the antioxidant potential of the agent. A pattern of elevated oxidative stress, measured as CuZn superoxide dismutase gene expression and thiobarbituric acid-reactive substance content, was noted in diabetic rats, and both parameters were normalized by nitecapone treatment. In diabetic rats, activation of glomerular protein kinase C (PKC) was confirmed by isoform-specific translocation and Ser23 phosphorylation of the PKC substrate Na,K-ATPase. PKC-dependent changes in Na,K-ATPase phosphorylation were associated with decreased glomerular Na,K-ATPase activity. Nitecapone-treated diabetic rats were protected from these intracellular modifications. The combined results suggest that the COMT-inhibitory and antioxidant properties of nitecapone provide a protective therapy against the development of diabetic nephropathy.
  •  
9.
  • Larsson, O, et al. (författare)
  • Phosphatidylinositol 4,5-bisphosphate and ATP-sensitive potassium channel regulation: a word of caution
  • 2000
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 49:9, s. 1409-1412
  • Tidskriftsartikel (refereegranskat)abstract
    • Phosphatidylinositol 4,5-bisphosphate (PIP2) has been suggested to play an important role as an endogenous regulator of ATP-sensitive potassium (KATP) channels consisting of Kir6.2 as a pore-forming subunit. These studies show the ability of PIP2 to activate KATP channel activity and to counteract the inhibitory effect of ATP, implying that PIP2 could serve the function of modulating the sensitivity of KATP channels to the cytoplasmic free ATP concentration. Careful examination of the literature reveals that the definitive physiologically relevant experiments to establish efficacy of PIP2 on this channel may still have to be performed. Our reservations are based on the handling of PIP2 in cell-free experiments and in various strategies designed to modulate PIP2 concentrations in intact cells. Furthermore, a potent stimulatory effect of phosphatidylinositol 3,4,5trisphosphate, a downstream metabolite of PIP2, on KATP channel activity raises the possibility that the effects on the KATP channel may not be directly related to PIP2.
  •  
10.
  • Lofgren, P, et al. (författare)
  • Secretion of tumor necrosis factor-alpha shows a strong relationship to insulin-stimulated glucose transport in human adipose tissue
  • 2000
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 49:5, s. 688-692
  • Tidskriftsartikel (refereegranskat)abstract
    • Some animal models suggest that tumor necrosis factor (TNF)-alpha is a key component in obesity-linked insulin resistance because it inhibits insulin receptor signaling and glucose transport in insulin-sensitive tissues. However, in vivo data in humans have given conflicting results regarding the relationship between circulating TNF-alpha levels and insulin sensitivity. In the present study, the potential local role of TNF-alpha on insulin action in human subcutaneous adipose tissue was studied in 42 obese women (BMI 39+/-10 kg/m2). We found a strong inverse correlation between adipose TNF-alpha secretion and maximum insulin-stimulated glucose transport in adipocytes that was independent of fat cell volume, age, and BMI (P &lt; 0.001, r = 0.58). As much as one-third of the variation in insulin-stimulated glucose transport could be accounted for by variations in TNF-alpha secretion. There was no significant correlation (r = 0.11) between secretion of adipose plasminogen activator inhibitor 1 and glucose transport. Furthermore, subcutaneous adipose tissue of 4 obese women (BMI 40+/-4) incubated with TNF-A for 24 h showed a one-third concentration-dependent inhibition of insulin-stimulated glucose transport (P &lt; 0.01). In conclusion, adipose TNF-alpha may be an important specific and local factor in adipose tissue that influences the ability of insulin to stimulate glucose transport in human fat cells, at least in obese women.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy