SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0012 1797 OR L773:1939 327X ;srt2:(2005-2009)"

Sökning: L773:0012 1797 OR L773:1939 327X > (2005-2009)

  • Resultat 11-20 av 159
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
11.
  • Buschard, Karsten, et al. (författare)
  • C16:0 sulfatide inhibits insulin secretion in rat beta-cells by reducing the sensitivity of KATP channels to ATP inhibition
  • 2006
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 55:10, s. 2826-34
  • Tidskriftsartikel (refereegranskat)abstract
    • Sulfatide (3'-sulfo-beta-galactosyl ceramide) is a glycosphingolipid present in mammalians in various fatty acid isoforms of which the saturated 16 carbon-atom length (C16:0) is more abundant in pancreatic islets than in neural tissue, where long-chain sulfatide isoforms dominate. We previously reported that sulfatide isolated from pig brain inhibits glucose-induced insulin secretion by activation of ATP-sensitive K+ channels (K(ATP) channels). Here, we show that C16:0 sulfatide is the active isoform. It inhibits glucose-stimulated insulin secretion by reducing the sensitivity of the K(ATP) channels to ATP. (The half-maximal inhibitory concentration is 10.3 and 36.7 micromol/l in the absence and presence of C16:0 sulfatide, respectively.) C16:0 sulfatide increased whole-cell K(ATP) currents at intermediate glucose levels and reduced the ability of glucose to induce membrane depolarization, reduced electrical activity, and increased the cytoplasmic free Ca2+ concentration. Recordings of cell capacitance revealed that C16:0 sulfatide increased Ca2+-induced exocytosis by 215%. This correlated with a stimulation of insulin secretion by C16:0 sulfatide in intact rat islets exposed to diazoxide and high K+. C24:0 sulfatide or the sulfatide precursor, beta-galactosyl ceramide, did not affect any of the measured parameters. C16:0 sulfatide did not modulate glucagon secretion from intact rat islets. In betaTC3 cells, sulfatide was expressed (mean [+/-SD] 0.30 +/- 0.04 pmol/microg protein), and C16:0 sulfatide was found to be the dominant isoform. No expression of sulfatide was detected in alphaTC1-9 cells. We conclude that a major mechanism by which the predominant sulfatide isoform in beta-cells, C16:0 sulfatide, inhibits glucose-induced insulin secretion is by reducing the K(ATP) channel sensitivity to the ATP block.
  •  
12.
  • Cabric, Sanja, et al. (författare)
  • Islet Surface Heparinization Prevents the Instant-Blood Mediated Inflammatory Reaction in Islet Transplantation
  • 2007
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 56:8, s. 2008-2015
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE—In clinical islet transplantation, the instant blood-mediated inflammatory reaction (IBMIR) is a major factor contributing to the poor initial engraftment of the islets. This reaction is triggered by tissue factor and monocyte chemoattractant protein (MCP)-1, expressed by the transplanted pancreatic islets when the islets come in contact with blood in the portal vein. All currently identified systemic inhibitors of the IBMIR are associated with a significantly increased risk of bleeding or other side effects. To avoid systemic treatment, the aim of the present study was to render the islet graft blood biocompatible by applying a continuous heparin coating to the islet surface.RESEARCH DESIGN AND METHODS—A biotin/avidin technique was used to conjugate preformed heparin complexes to the surface of pancreatic islets. This endothelial-like coating was achieved by conjugating barely 40 IU heparin per full-size clinical islet transplant.RESULTS—Both in an in vitro loop model and in an allogeneic porcine model of clinical islet transplantation, this heparin coating provided protection against the IBMIR. Culturing heparinized islets for 24 h did not affect insulin release after glucose challenge, and heparin-coated islets cured diabetic mice in a manner similar to untreated islets.CONCLUSIONS—This novel pretreatment procedure prevents intraportal thrombosis and efficiently inhibits the IBMIR without increasing the bleeding risk and, unlike other pretreatment procedures (e.g., gene therapy), without inducing acute or chronic toxicity in the islets.
  •  
13.
  • Campbell, Catarina D., et al. (författare)
  • Association studies of BMI and type 2 diabetes in the neuropeptide y pathway - A possible role for NPY2R as a candidate gene for type 2 diabetes in men
  • 2007
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 56:5, s. 1460-1467
  • Tidskriftsartikel (refereegranskat)abstract
    • The neuropeptide Y (NPY) family of peptides and receptors regulate food intake. Inherited variation in this pathway could influence susceptibility to obesity and its complications, including type 2 diabetes. We genotyped a set of 71 single nucleotide polymorphisms (SNPs) that capture the most common variation in NPY, PPY, PYY, NPY1R, NPY2R, and NPY5R in 2,800 individuals of recent European ancestry drawn from the near extremes of BMI distribution. Five SNPs located upstream of NPY2R were nominally associated with BMI in men (P values = 0.001-0.009, odds ratios [ORs] 1.27-1.34). No association with BMI was observed in women, and no consistent associations were observed for other genes in this pathway. We attempted to replicate the association with BMI in 2,500 men and tested these SNPs for association with type 2 diabetes in 8,000 samples. We observed association with BMI in men in only one replica- tion sample and saw no association in the combined replication samples (P = 0.154, OR = 1.09). Finally, a 9% haplotype was associated with type 2 diabetes in men (P = 1.73 x 10(-4), OR = 1.36) and not in women. Variation in this pathway likely does not have a major influence on BMI, although small effects cannot be ruled out; NPY2R should be considered a candidate gene for type 2 diabetes in men.
  •  
14.
  • Cardozo, AK, et al. (författare)
  • Cytokines downregulate the sarcoendoplasmic reticulum pump Ca2+ ATPase 2b and deplete endoplasmic reticulum Ca2+, leading to induction of endoplasmic reticulum stress in pancreatic beta-cells
  • 2005
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 54:2, s. 452-461
  • Tidskriftsartikel (refereegranskat)abstract
    • Cytokines and free radicals are mediators of β-cell death in type 1 diabetes. Under in vitro conditions, interleukin-1β (IL-1β) + γ-interferon (IFN-γ) induce nitric oxide (NO) production and apoptosis in rodent and human pancreatic β-cells. We have previously shown, by microarray analysis of primary β-cells, that IL-1β + IFN-γ decrease expression of the mRNA encoding for the sarcoendoplasmic reticulum pump Ca2+ ATPase 2b (SERCA2b) while inducing expression of the endoplasmic reticulum stress–related and proapoptotic gene CHOP (C/EBP [CCAAT/enhancer binding protein] homologous protein). In the present study we show that cytokine-induced apoptosis and necrosis in primary rat β-cells and INS-1E cells largely depends on NO production. IL-1β + IFN-γ, via NO synthesis, markedly decreased SERCA2b protein expression and depleted ER Ca2+ stores. Of note, β-cells showed marked sensitivity to apoptosis induced by SERCA blockers, as compared with fibroblasts. Cytokine-induced ER Ca2+ depletion was paralleled by an NO-dependent induction of CHOP protein and activation of diverse components of the ER stress response, including activation of inositol-requiring ER-to-nucleus signal kinase 1α (IRE1α) and PRK (RNA-dependent protein kinase)-like ER kinase (PERK)/activating transcription factor 4 (ATF4), but not ATF6. In contrast, the ER stress–inducing agent thapsigargin triggered these four pathways in parallel. In conclusion, our results suggest that the IL-1β + IFN-γ–induced decrease in SERCA2b expression, with subsequent depletion of ER Ca2+ and activation of the ER stress pathway, is a potential contributory mechanism to β-cell death.
  •  
15.
  • Cervin, Camilla, et al. (författare)
  • Genetic similarities between latent autoimmune diabetes in adults, type 1 diabetes, and type 2 diabetes
  • 2008
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 57:5, s. 1433-1437
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE-Latent autoimmune diabetes in adults (LADA) is often considered a slowly progressing subtype of type 1 diabetes, although the clinical picture more resembles type 2 diabetes. One way to improve classification is to study whether LADA shares genetic features with type 1 and/or type 2 diabetes. RESEARCH DESIGN AND METHODS-To accomplish this we studied whether LADA shares variation in the HLA locus or INS VNTR and PTPN22 genes with type I diabetes or the TCF7L2 gene with type 2 diabetes in 361 LADA, 718 type 1 diabetic, and 1,676 type 2 diabetic patients, as well as 1,704 healthy control subjects from Sweden and Finland. RESULTS-LADA subjects showed, compared with type 2 diabetic patients, increased frequency of risk for the HLA-DQB1 *0201/*0302 genotype (27 vs. 6.9%; P < 1 X 10(-6)), with similar frequency as with type I diabetes (36%). In addition, LADA subjects showed higher frequencies of protective HLA-DQB1 *0602(3)/X than type I diabetic patients (8.1 vs. 3.2%, P = 0.003). The AA genotype of rs689, referring to the class I allele in the INS VNTR, as well as the CT/TT genotypes of rs2476601 in the PTPN22 gene, were increased both in type 1 diabetic (P = 3 X 10(-14) and P = 1 X 10(-10), respectively) and LADA (P = 0.001 and P = 0.002) subjects compared with control subjects. Notably, the frequency of the type 2 diabetes-associated CT/TT genotypes of rs7903146 in the TCF7L2 were increased in LADA subjects (52.8%; P = 0.03), to the same extent as in type 2 diabetic subjects (54.1%, P = 3 X 10(-7)), compared with control subjects (44.8%) and type I diabetic subjects (43.39%). CONCLUSIONS-LADA shares genetic features with both type I (HLA, INS VNTR, and PTPN22) and type 2 (TCF7L2) diabetes, which justifies considering LADA as an admixture of the two major types of diabetes.
  •  
16.
  • Chu, Kwan Yi, et al. (författare)
  • Angiotensin II type 1 receptor blockade improves beta-cell function and glucose tolerance in a mouse model of type 2 diabetes
  • 2006
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 55:2, s. 367-374
  • Tidskriftsartikel (refereegranskat)abstract
    • We identified an angiotensin-generating system in pancreatic islets and found that exogenously administered angiotensin II, after binding to its receptors (angiotensin II type 1 receptor [AT1R]), inhibits insulin release in a manner associated with decreased islet blood flow and (pro)insulin biosynthesis. The present study tested the hypothesis that there is a change in AT1R expression in the pancreatic islets of the obesity-induced type 2 diabetes model, the db/db mouse, which enables endogenous levels of angiotensin II to impair islet function. Islets from 10-week-old db/db and control mice were isolated and investigated. In addition, the AT1R antagonist losartan was administered orally to 4-week-old db/db mice for an 8-week period. We found that AT1R mRNA was upregulated markedly in db/db islets and double immunolabeling confirmed that the AT1R was localized to beta-cells. Losartan selectively improved glucose-induced insulin release and (pro)insulin biosynthesis in db/db islets. Oral losartan treatment delayed the onset of diabetes, and reduced hyperglycemia and glucose intolerance in db/db mice, but did not affect the insulin sensitivity of peripheral tissues. The present findings indicate that AT1R antagonism improves beta-cell function and glucose tolerance in young type 2 diabetic mice. Whether islet AT1R activation plays a role in the pathogenesis of human type 2 diabetes remains to be determined.
  •  
17.
  • da Silva Xavier, Gabriela, et al. (författare)
  • TCF7L2 regulates late events in insulin secretion from pancreatic islet beta-cells
  • 2009
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 58:4, s. 894-905
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: Polymorphisms in the human TCF7L2 gene are associated with reduced insulin secretion and an increased risk of type 2 diabetes. However, the mechanisms by which TCF7L2 affect insulin secretion are still unclear. We define the effects of TCF7L2 expression level on mature beta-cell function and suggest a potential mechanism for its actions. RESEARCH DESIGN AND METHODS: TCF7L2 expression in rodent islets and beta-cell lines was altered using RNAi or adenoviral transduction. Beta-cell gene profiles were measured by quantitative real-time PCR and the effects on intracellular signaling and exocytosis by live cell imaging, electron microscopy, and patch clamp electrophysiology. RESULTS: Reducing TCF7L2 expression levels by RNAi decreased glucose- but not KCl-induced insulin secretion. The glucose-induced increments in both ATP/ADP ratio and cytosolic free Ca2+ concentration ([Ca2+]i) were increased compared with controls. Overexpression of TCF7L2 exerted minor inhibitory effects on glucose-regulated changes in [Ca2+]i and insulin release. Gene expression profiling in TCF7L2-silenced cells revealed increased levels of mRNA encoding syntaxin 1A but decreased Munc18–1 and ZnT8 mRNA. Whereas the number of morphologically docked vesicles was unchanged by TCF7L2 suppression, secretory granule movement increased and capacitance changes decreased, indicative of defective vesicle fusion. CONCLUSION: TCF7L2 is involved in maintaining expression of beta-cell genes regulating secretory granule fusion. Defective insulin exocytosis may thus underlie increased diabetes incidence in carriers of the at-risk TCF7L2 alleles.
  •  
18.
  • Dahlman, I, et al. (författare)
  • Downregulation of electron transport chain genes in visceral adipose tissue in type 2 diabetes independent of obesity and possibly involving tumor necrosis factor-alpha
  • 2006
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 55:6, s. 1792-1799
  • Tidskriftsartikel (refereegranskat)abstract
    • Impaired oxidative phosphorylation is suggested as a factor behind insulin resistance of skeletal muscle in type 2 diabetes. The role of oxidative phosphorylation in adipose tissue was elucidated from results of Affymetrix gene profiling in subcutaneous and visceral adipose tissue of eight nonobese healthy, eight obese healthy, and eight obese type 2 diabetic women. Downregulation of several genes in the electron transport chain was the most prominent finding in visceral fat of type 2 diabetic women independent of obesity, but the gene pattern was distinct from that previously reported in skeletal muscle in type 2 diabetes. A similar but much weaker effect was observed in subcutaneous fat. Tumor necrosis factor-α (TNF-α) is a major factor behind inflammation and insulin resistance in adipose tissue. TNF-α treatment decreased mRNA expression of electron transport chain genes and also inhibited fatty acid oxidation when differentiated human preadipocytes were treated with the cytokine for 48 h. Thus, type 2 diabetes is associated with a tissue- and region-specific downregulation of oxidative phosphorylation genes that is independent of obesity and at least in part mediated by TNF-α, suggesting that impaired oxidative phosphorylation of visceral adipose tissue has pathogenic importance for development of type 2 diabetes.
  •  
19.
  • Dahlman, I, et al. (författare)
  • The CIDEA gene V115F polymorphism is associated with obesity in Swedish subjects
  • 2005
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 54:10, s. 3032-3034
  • Tidskriftsartikel (refereegranskat)abstract
    • The cell death–inducing DFFA (DNA fragmentation factor-α)-like effector A (CIDEA) gene is implicated as an important regulator of body weight in mice and humans and is therefore a candidate gene for human obesity. Here, we characterize common CIDEA gene polymorphisms and investigate them for association with obesity in two independent Swedish samples; the first comprised 981 women and the second 582 men. Both samples display a large variation in BMI. The only detected coding polymorphism encodes an exon 4 V115F amino acid substitution, which is associated with BMI in both sexes (P = 0.021 for women, P = 0.023 for men, and P = 0.0015 for joint analysis). These results support a role for CIDEA alleles in human obesity. CIDEA-deficient mice display higher metabolic rate, and the gene cross-talks with tumor necrosis factor-α (TNF-α) in fat cells. We hypothesize that CIDEA alleles regulate human obesity through impact on basal metabolic rate and adipocyte TNF-α signaling.
  •  
20.
  • Deshmukh, A, et al. (författare)
  • Exercise-induced phosphorylation of the novel Akt substrates AS160 and filamin A in human skeletal muscle
  • 2006
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 55:6, s. 1776-1782
  • Tidskriftsartikel (refereegranskat)abstract
    • Skeletal muscle contraction stimulates multiple signaling cascades that govern a variety of metabolic and transcriptional events. Akt/protein kinase B regulates metabolism and growth/muscle hypertrophy, but contraction effects on this target and its substrates are varied and may depend on the mode of the contractile stimulus. Accordingly, we determined the effects of endurance or resistance exercise on phosphorylation of Akt and downstream substrates in six trained cyclists who performed a single bout of endurance or resistance exercise separated by ∼7 days. Muscle biopsies were taken from the vastus lateralis at rest and immediately after exercise. Akt Ser473 phosphorylation was increased (1.8-fold; P = 0.011) after endurance but was unchanged after resistance exercise. Conversely, Akt Thr308 phosphorylation was unaltered after either bout of exercise. Several exercise-responsive phosphoproteins were detected by immunoblot analysis with a phospho-Akt substrate antibody. pp160 and pp300 were identified as AS160 and filamin A, respectively, with increased phosphorylation (2.0- and 4.9-fold, respectively; P &lt; 0.05) after endurance but not resistance exercise. In conclusion, AS160 and filamin A may provide an important link to mediate endurance exercise–induced bioeffects in skeletal muscle.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 11-20 av 159
Typ av publikation
tidskriftsartikel (149)
konferensbidrag (9)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (147)
övrigt vetenskapligt/konstnärligt (12)
Författare/redaktör
Groop, Leif (20)
Almgren, Peter (12)
Tuomi, Tiinamaija (9)
Zierath, JR (8)
Ahren, Bo (7)
Lyssenko, Valeriya (7)
visa fler...
Altshuler, David (7)
Tuomi, T. (5)
Isomaa, Bo (5)
Saxena, Richa (5)
Korsgren, Olle (4)
Salehi, S Albert (4)
Franks, Paul (4)
Westerblad, H (4)
Berggren, PO (4)
Nilsson, Peter (4)
Katz, A. (4)
Arner, P (4)
Ohlsson, Claes, 1965 (4)
Ling, Charlotte (4)
Lanner, JT (4)
Orešič, Matej, 1967- (4)
Altshuler, D. (4)
Welsh, Nils (4)
Daly, Mark J. (4)
Carlsson, Per-Ola (4)
Fauconnier, J (4)
Zhang, SJ (4)
Bruton, JD (3)
OSTENSON, CG (3)
Renström, Erik (3)
Luthman, Holger (3)
Rorsman, Patrik (3)
Nilsson, Bo (3)
Wareham, Nicholas J. (3)
Poulsen, Pernille (3)
Vaag, Allan (3)
Eriksson, Karl-Fredr ... (3)
Sundler, Frank (3)
Wallberg-Henriksson, ... (3)
Knowler, William C. (3)
Vaarala, Outi, 1962- (3)
Holm, Cecilia (3)
Oscarsson, Jan, 1960 (3)
Karpe, Fredrik (3)
Smith, Ulf, 1943 (3)
Jansson, Leif (3)
Dahlman, I (3)
Bohlooly-Yeganeh, Mo ... (3)
Daly, M. J. (3)
visa färre...
Lärosäte
Karolinska Institutet (58)
Lunds universitet (48)
Uppsala universitet (28)
Göteborgs universitet (19)
Umeå universitet (16)
Linköpings universitet (9)
visa fler...
Örebro universitet (6)
Stockholms universitet (3)
Chalmers tekniska högskola (3)
Högskolan i Halmstad (1)
Gymnastik- och idrottshögskolan (1)
visa färre...
Språk
Engelska (158)
Odefinierat språk (1)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (74)
Samhällsvetenskap (2)
Naturvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy