SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0012 1797 OR L773:1939 327X srt2:(2020-2021);srt2:(2020)"

Sökning: L773:0012 1797 OR L773:1939 327X > (2020-2021) > (2020)

  • Resultat 11-20 av 22
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
11.
  • Merino, Jordi, et al. (författare)
  • Interaction Between Type 2 Diabetes Prevention Strategies and Genetic Determinants of Coronary Artery Disease on Cardiometabolic Risk Factors
  • 2020
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 69:1, s. 112-120
  • Tidskriftsartikel (refereegranskat)abstract
    • Coronary artery disease (CAD) is more frequent among individuals with dysglycemia. Preventive interventions for diabetes can improve cardiometabolic risk factors (CRFs), but it is unclear whether the benefits on CRFs are similar for individuals at different genetic risk for CAD. We built a 201-variant polygenic risk score (PRS) for CAD and tested for interaction with diabetes prevention strategies on 1-year changes in CRFs in 2,658 Diabetes Prevention Program (DPP) participants. We also examined whether separate lifestyle behaviors interact with PRS and affect changes in CRFs in each intervention group. Participants in both the lifestyle and metformin interventions had greater improvement in the majority of recognized CRFs compared with placebo (P < 0.001) irrespective of CAD genetic risk (Pinteraction > 0.05). We detected nominal significant interactions between PRS and dietary quality and physical activity on 1-year change in BMI, fasting glucose, triglycerides, and HDL cholesterol in individuals randomized to metformin or placebo, but none of them achieved the multiple-testing correction for significance. This study confirms that diabetes preventive interventions improve CRFs regardless of CAD genetic risk and delivers hypothesis-generating data on the varying benefit of increasing physical activity and improving diet on intermediate cardiovascular risk factors depending on individual CAD genetic risk profile.
  •  
12.
  • Nagao, Mototsugu, et al. (författare)
  • Potential Protection Against Type 2 Diabetes in Obesity Through Lower CD36 Expression and Improved Exocytosis in β-Cells
  • 2020
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 69:6, s. 1193-1205
  • Tidskriftsartikel (refereegranskat)abstract
    • Obesity is a risk factor for type 2 diabetes (T2D); however, not all obese individuals develop the disease. In this study, we aimed to investigate the cause of differential insulin secretion capacity of pancreatic islets from donors with T2D and non-T2D (ND), especially obese donors (BMI ≥30 kg/m2). Islets from obese donors with T2D had reduced insulin secretion, decreased β-cell exocytosis, and higher expression of fatty acid translocase CD36. We tested the hypothesis that CD36 is a key molecule in the reduced insulin secretion capacity. Indeed, CD36 overexpression led to decreased insulin secretion, impaired exocytosis, and reduced granule docking. This was accompanied by reduced expression of the exocytotic proteins SNAP25, STXBP1, and VAMP2, likely because CD36 induced downregulation of the insulin receptor substrate (IRS) proteins, suppressed the insulin-signaling phosphatidylinositol 3-kinase/AKT pathway, and increased nuclear localization of the transcription factor FoxO1. CD36 antibody treatment of the human β-cell line EndoC-βH1 increased IRS1 and exocytotic protein levels, improved granule docking, and enhanced insulin secretion. Our results demonstrate that β-cells from obese donors with T2D have dysfunctional exocytosis likely due to an abnormal lipid handling represented by differential CD36 expression. Hence, CD36 could be a key molecule to limit β-cell function in T2D associated with obesity.
  •  
13.
  • Nilsen, M. S., et al. (författare)
  • 3-Hydroxyisobutyrate, A Strong Marker of Insulin Resistance in Type 2 Diabetes and Obesity That Modulates White and Brown Adipocyte Metabolism
  • 2020
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 69:9, s. 1903-1916
  • Tidskriftsartikel (refereegranskat)abstract
    • Circulating branched-chain amino acids (BCAAs) associate with insulin resistance and type 2 diabetes. 3-Hydroxyisobutyrate (3-HIB) is a catabolic intermediate of the BCAA valine. In this study, we show that in a cohort of 4,942 men and women, circulating 3-HIB is elevated according to levels of hyperglycemia and established type 2 diabetes. In complementary cohorts with measures of insulin resistance, we found positive correlates for circulating 3-HIB concentrations with HOMA2 of insulin resistance, as well as a transient increase in 3-HIB followed by a marked decrease after bariatric surgery and weight loss. During differentiation, both white and brown adipocytes upregulate BCAA utilization and release increasing amounts of 3-HIB. Knockdown of the 3-HIB-forming enzyme 3-hydroxyisobutyryl-CoA hydrolase decreases release of 3-HIB and lipid accumulation in both cell types. Conversely, addition of 3-HIB to white and brown adipocyte cultures increases fatty acid uptake and modulated insulin-stimulated glucose uptake in a time-dependent manner. Finally, 3-HIB treatment decreases mitochondrial oxygen consumption and generation of reactive oxygen species in white adipocytes, while increasing these measures in brown adipocytes. Our data establish 3-HIB as a novel adipocyte-derived regulator of adipocyte subtype-specific functions strongly linked to obesity, insulin resistance, and type 2 diabetes.
  •  
14.
  • Ouni, Meriem, et al. (författare)
  • Epigenetic changes in islets of langerhans preceding the onset of diabetes
  • 2020
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 69:11, s. 2503-2517
  • Tidskriftsartikel (refereegranskat)abstract
    • The identification of individuals with a high risk of developing type 2 diabetes (T2D) is fundamental for pre-vention. Here, we used a translational approach and prediction criteria to identify changes in DNA methylation visible before the development of T2D. Islets of Langerhans were isolated from genetically identical 10-week-old female New Zealand Obese mice, which differ in their degree of hyperglycemia and in liver fat content. The application of a semiexplorative approach identified 497 differentially expressed and methylated genes (P = 6.42e-09, hypergeometric test) enriched in pathways linked to insulin secretion and extracellular matrix-receptor interaction. The comparison of mouse data with DNA methylation levels of incident T2D cases from the prospective European Prospective Investigation of Cancer (EPIC)-Potsdam cohort, revealed 105 genes with altered DNA methylation at 605 cytosine-phosphate-guanine (CpG) sites, which were associated with future T2D. AKAP13, TENM2, CTDSPL, PTPRN2, and PTPRS showed the strongest predictive potential (area under the receiver operating characteristic curve values 0.62–0.73). Among the new candidates identified in blood cells, 655 CpG sites, located in 99 genes, were differentially methylated in islets of humans with T2D. Using correction for multiple testing detected 236 genes with an altered DNA methylation in blood cells and 201 genes in diabetic islets. Thus, the introduced translational approach identified novel putative biomarkers for early pancreatic islet aberrations preceding T2D.
  •  
15.
  • Satin, L. S., et al. (författare)
  • "Take Me To Your Leader": An Electrophysiological Appraisal of the Role of Hub Cells in Pancreatic Islets
  • 2020
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 69:5, s. 830-836
  • Tidskriftsartikel (refereegranskat)abstract
    • The coordinated electrical activity of beta-cells within the pancreatic islet drives oscillatory insulin secretion. A recent hypothesis postulates that specially equipped "hub" or "leader" cells within the beta-cell network drive islet oscillations and that electrically silencing or optically ablating these cells suppresses coordinated electrical activity (and thus insulin secretion) in the rest of the islet. In this Perspective, we discuss this hypothesis in relation to established principles of electrophysiological theory. We conclude that whereas electrical coupling between beta-cells is sufficient for the propagation of excitation across the islet, there is no obvious electrophysiological mechanism that explains how hyperpolarizing a hub cell results in widespread inhibition of islet electrical activity and disruption of their coordination. Thus, intraislet diffusible factors should perhaps be considered as an alternate mechanism.
  •  
16.
  •  
17.
  • Taddeo, EP, et al. (författare)
  • Mitochondrial Proton Leak Regulated by Cyclophilin D Elevates Insulin Secretion in Islets at Nonstimulatory Glucose Levels
  • 2020
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 69:2, s. 131-145
  • Tidskriftsartikel (refereegranskat)abstract
    • Fasting hyperinsulinemia precedes the development of type 2 diabetes. However, it is unclear whether fasting insulin hypersecretion is a primary driver of insulin resistance or a consequence of the progressive increase in fasting glycemia induced by insulin resistance in the prediabetic state. Herein, we have discovered a mechanism that specifically regulates non–glucose-stimulated insulin secretion (NGSIS) in pancreatic islets that is activated by nonesterified free fatty acids, the major fuel used by β-cells during fasting. We show that the mitochondrial permeability transition pore regulator cyclophilin D (CypD) promotes NGSIS, but not glucose-stimulated insulin secretion, by increasing mitochondrial proton leak. Islets from prediabetic obese mice show significantly higher CypD-dependent proton leak and NGSIS compared with lean mice. Proton leak–mediated NGSIS is conserved in human islets and is stimulated by exposure to nonesterified free fatty acids at concentrations observed in obese subjects. Mechanistically, proton leak activates islet NGSIS independently of mitochondrial ATP synthesis but ultimately requires closure of the KATP channel. In summary, we have described a novel nonesterified free fatty acid–stimulated pathway that selectively drives pancreatic islet NGSIS, which may be therapeutically exploited as an alternative way to halt fasting hyperinsulinemia and the progression of type 2 diabetes.
  •  
18.
  • Yaghootkar, Hanieh, et al. (författare)
  • Genetic Studies of Leptin Concentrations Implicate Leptin in the Regulation of Early Adiposity
  • 2020
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 69:12, s. 2806-2818
  • Tidskriftsartikel (refereegranskat)abstract
    • Leptin influences food intake by informing the brain about the status of body fat stores. Rare LEP mutations associated with congenital leptin deficiency cause severe early-onset obesity that can be mitigated by administering leptin. However, the role of genetic regulation of leptin in polygenic obesity remains poorly understood. We performed an exome-based analysis in up to 57,232 individuals of diverse ancestries to identify genetic variants that influence adiposity-adjusted leptin concentrations. We identify five novel variants, including four missense variants, in LEP, ZNF800, KLHL31, and ACTL9, and one intergenic variant near KLF14. The missense variant Val94Met (rs17151919) in LEP was common in individuals of African ancestry only, and its association with lower leptin concentrations was specific to this ancestry (P = 2 × 10-16, n = 3,901). Using in vitro analyses, we show that the Met94 allele decreases leptin secretion. We also show that the Met94 allele is associated with higher BMI in young African-ancestry children but not in adults, suggesting that leptin regulates early adiposity.
  •  
19.
  • Yuan, Shuai, et al. (författare)
  • Is Type 2 Diabetes Causally Associated With Cancer Risk? : Evidence From a Two-Sample Mendelian Randomization Study
  • 2020
  • Ingår i: Diabetes. - : AMER DIABETES ASSOC. - 0012-1797 .- 1939-327X. ; 69:7, s. 1588-1596
  • Tidskriftsartikel (refereegranskat)abstract
    • We conducted a two-sample Mendelian randomization study to investigate the causal associations of type 2 diabetes mellitus (T2DM) with risk of overall cancer and 22 site-specific cancers. Summary-level data for cancer were extracted from the Breast Cancer Association Consortium and UK Biobank. Genetic predisposition to T2DM was associated with higher odds of pancreatic, kidney, uterine, and cervical cancer and lower odds of esophageal cancer and melanoma but not associated with 16 other site-specific cancers or overall cancer. The odds ratios (ORs) were 1.13 (95% CI 1.04, 1.22), 1.08 (1.00, 1.17), 1.08 (1.01, 1.15), 1.07 (1.01, 1.15), 0.89 (0.81, 0.98), and 0.93 (0.89, 0.97) for pancreatic, kidney, uterine, cervical, and esophageal cancer and melanoma, respectively. The association between T2DM and pancreatic cancer was also observed in a meta-analysis of this and a previous Mendelian randomization study (OR 1.08; 95% CI 1.02, 1.14;P= 0.009). There was limited evidence supporting causal associations between fasting glucose and cancer. Genetically predicted fasting insulin levels were positively associated with cancers of the uterus, kidney, pancreas, and lung. The current study found causal detrimental effects of T2DM on several cancers. We suggest reinforcing the cancer screening in T2DM patients to enable the early detection of cancer.
  •  
20.
  • Zhao, LP, et al. (författare)
  • Motifs of Three HLA-DQ Amino Acid Residues (α44, β57, β135) Capture Full Association With the Risk of Type 1 Diabetes in DQ2 and DQ8 Children
  • 2020
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 69:7, s. 1573-1587
  • Tidskriftsartikel (refereegranskat)abstract
    • HLA-DQA1 and -DQB1 are strongly associated with type 1 diabetes (T1D), and DQ8.1 and DQ2.5 are major risk haplotypes. Next-generation targeted sequencing of HLA-DQA1 and -DQB1 in Swedish newly diagnosed 1- to 18 year-old patients (n = 962) and control subjects (n = 636) was used to construct abbreviated DQ haplotypes, converted into amino acid (AA) residues, and assessed for their associations with T1D. A hierarchically organized haplotype (HOH) association analysis allowed 45 unique DQ haplotypes to be categorized into seven clusters. The DQ8/9 cluster included two DQ8.1 risk and the DQ9 resistant haplotypes, and the DQ2 cluster included the DQ2.5 risk and DQ2.2 resistant haplotypes. Within each cluster, HOH found residues α44Q (odds ratio [OR] 3.29, P = 2.38 * 10−85) and β57A (OR 3.44, P = 3.80 * 10−84) to be associated with T1D in the DQ8/9 cluster representing all ten residues (α22, α23, α44, α49, α51, α53, α54, α73, α184, β57) due to complete linkage disequilibrium (LD) of α44 with eight such residues. Within the DQ2 cluster and due to LD, HOH analysis found α44C and β135D to share the risk for T1D (OR 2.10, P = 1.96 * 10−20). The motif “QAD” of α44, β57, and β135 captured the T1D risk association of DQ8.1 (OR 3.44, P = 3.80 * 10−84), and the corresponding motif “CAD” captured the risk association of DQ2.5 (OR 2.10, P = 1.96 * 10−20). Two risk associations were related to GAD65 autoantibody (GADA) and IA-2 autoantibody (IA-2A) but in opposite directions. CAD was positively associated with GADA (OR 1.56, P = 6.35 * 10−8) but negatively with IA-2A (OR 0.59, P = 6.55 * 10−11). QAD was negatively associated with GADA (OR 0.88; P = 3.70 * 10−3) but positively with IA-2A (OR 1.64; P = 2.40 * 10−14), despite a single difference at α44. The residues are found in and around anchor pockets 1 and 9, as potential T-cell receptor contacts, in the areas for CD4 binding and putative homodimer formation. The identification of three HLA-DQ AAs (α44, β57, β135) conferring T1D risk should sharpen functional and translational studies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 11-20 av 22

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy