SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0193 1849 srt2:(2000-2004)"

Sökning: L773:0193 1849 > (2000-2004)

  • Resultat 1-10 av 50
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ahrén, Bo, et al. (författare)
  • Insufficient islet compensation to insulin resistance vs. reduced glucose effectiveness in glucose-intolerant mice
  • 2002
  • Ingår i: American Journal of Physiology: Endocrinology and Metabolism. - : American Physiological Society. - 1522-1555 .- 0193-1849. ; 283:4, s. 738-744
  • Tidskriftsartikel (refereegranskat)abstract
    • This study evaluated the relative contribution of insulin-dependent mechanisms vs. mechanisms independent on dynamic insulin for glucose intolerance induced by high-fat diet. C57BL/6J mice underwent a frequently sampled intravenous glucose tolerance test (1 g/kg glucose) at 1 wk and 1, 3, and 10 mo after initiation of a high-fat diet (58% fat; control diet 11% fat) to measure glucose effectiveness (S-G) and disposition index (DI), i.e., insulin sensitivity (SI) times early or total insulin secretion. Glucose disappearance (KG) and SI were reduced in high-fat-fed mice at all time points. Total (50 min) insulin secretion was sufficiently increased at all time points to compensate for the reduced SI, as judged by normal DI50 min. In contrast, early (10 min) insulin secretion was not sufficiently increased; DI10 min was reduced after 1, 3, and 10 mo. SG was reduced after 1 wk; the reduction persisted throughout the study period. Thus glucose intolerance induced by high-fat diet is, in early phases, solely explained by reduced glucose effectiveness, whereas insufficient early insulin secretion is of importance after long-term feeding.
  •  
2.
  • Al-Khalili, L, et al. (författare)
  • Prior serum- and AICAR-induced AMPK activation in primary human myocytes does not lead to subsequent increase in insulin-stimulated glucose uptake
  • 2004
  • Ingår i: American journal of physiology. Endocrinology and metabolism. - : American Physiological Society. - 0193-1849 .- 1522-1555. ; 287:3, s. E553-E557
  • Tidskriftsartikel (refereegranskat)abstract
    • Exposing isolated rat skeletal muscle to 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside [AICAR, a pharmacological activator of AMP-activated protein kinase (AMPK)] plus serum leads to a subsequent increase in insulin-stimulated glucose transport (Fisher JS, Gao J, Han DH, Holloszy JO, and Nolte LA. Am J Physiol Endocrinol Metab 282: E18–E23, 2002). Our goal was to determine whether preincubation of primary human skeletal muscle cells with human serum and AICAR (Serum+AICAR) would also induce a subsequent elevation in insulin-stimulated glucose uptake. Cells were preincubated for 1 h under 4 conditions: 1) without AICAR or serum (Control), 2) with serum, 3) with AICAR, or 4) with Serum+AICAR. Some cells were then collected for immunoblot analysis to assess phosphorylation of AMPK (pAMPK) and its substrate acetyl-CoA carboxylase (ACC). Other cells were incubated for an additional 4 h without AICAR or serum and then used to measure basal or insulin-stimulated 2-deoxyglucose (2-DG) uptake. Level of pAMPK was increased ( P < 0.01) for myotubes exposed to Serum+AICAR vs. all other groups. Phosphorylated ACC (pACC) levels were higher for both Serum+AICAR ( P < 0.05) and AICAR ( P < 0.05) vs. Control and Serum groups. Basal ( P < 0.05) and 1.2 nM insulin-stimulated ( P < 0.005) 2-DG uptake was higher for Serum vs. all other preincubation conditions at equal insulin concentration. Regardless of insulin concentration (0, 1.2, or 18 nM), 2-DG was unaltered in cells preincubated with Serum+AICAR vs. Control cells. In contrast to results with isolated rat skeletal muscle, increasing the pAMPK and pACC in human myocytes via preincubation with Serum+AICAR was insufficient to lead to a subsequent enhancement in insulin-stimulated glucose uptake.
  •  
3.
  • Améen, Caroline, 1975, et al. (författare)
  • Effects of gender and GH secretory pattern on sterol regulatory element-binding protein-1c and its target genes in rat liver.
  • 2004
  • Ingår i: American journal of physiology. Endocrinology and metabolism. - : American Physiological Society. - 0193-1849 .- 1522-1555. ; 287:6
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigated whether the sexually dimorphic secretory pattern of growth hormone (GH) in the rat regulates hepatic gene expression of sterol regulatory element-binding protein-1c (SREBP-1c) and its target genes. SREBP-1c, fatty acid synthase (FAS), and glycerol-3-phosphate acyltransferase (GPAT) mRNA were more abundant in female than in male livers, whereas acetyl-CoA carboxylase-1 (ACC1) and stearoyl-CoA desaturase-1 (SCD-1) were similarly expressed in both sexes. Hypophysectomized female rats were given GH as a continuous infusion or as two daily injections for 7 days to mimic the female- and male-specific GH secretory patterns, respectively. The female pattern of GH administration increased the expression of SREBP-1c, ACC1, FAS, SCD-1, and GPAT mRNA, whereas the male pattern of GH administration increased only SCD-1 mRNA. FAS and SCD-1 protein levels were regulated in a similar manner by GH. Incubation of primary rat hepatocytes with GH increased SCD-1 mRNA levels and decreased FAS and GPAT mRNA levels but had no effect on SREBP-1c mRNA. GH decreased hepatic liver X receptor-alpha (LXRalpha) mRNA levels both in vivo and in vitro. Feminization of the GH plasma pattern in male rats by administration of GH as a continuous infusion decreased insulin sensitivity and increased expression of FAS and GPAT mRNA but had no effect on SREBP-1c, ACC1, SCD-1, or LXRalpha mRNA. In conclusion, FAS and GPAT are specifically upregulated by the female secretory pattern of GH. This regulation is not a direct effect of GH on hepatocytes and does not involve changed expression of SREBP-1c or LXRalpha mRNA but is associated with decreased insulin sensitivity.
  •  
4.
  • Andersson, Agneta, et al. (författare)
  • Fatty acid profile of skeletal muscle phospholipids in trained and untrained young men
  • 2000
  • Ingår i: American Journal of Physiology. Endocrinology and Metabolism. - 0193-1849 .- 1522-1555. ; 279:4, s. E744-E751
  • Tidskriftsartikel (refereegranskat)abstract
    • Endurance trained (n = 14) and untrained young men (n = 15) were compared regarding the fatty acid profile of the vastus lateralis muscle after 8 wk on diets with a similar fatty acid composition. The skeletal muscle phospholipids in the trained group contained lower proportions of palmitic acid (16:0) (-12.4%, P < 0.001) and di-homo-gamma-linolenic acid [20:3(n-6)] (-15.3%, P = 0.018), a lower n-6-to-n-3 ratio (-42.0%, P = 0.015), higher proportions of stearic acid (18:0) (+9.8%, P = 0.004) and sum of n-3 polyunsaturated fatty acids (+33.8%, P = 0.009), and a higher ratio between 20:4(n-6) to 20:3(n-6) (+18.4%, P = 0.006) compared with those in the untrained group. The group differences in 16:0, 20:3(n-6), 18:0/16:0, and 20:4(n-6)/20:3(n-6) were independent of fiber-type distribution. The trained group also showed a lower proportion of 16:0 (-7.9%, P < 0.001) in skeletal muscle triglycerides irrespective of fiber type. In conclusion, the fatty acid profile of the skeletal muscle differed between trained and untrained individuals, although the dietary fatty acid composition was similar. This difference was not explained by different fiber-type distribution alone but appears to be a direct consequence of changes in fatty acid metabolism due to the higher level of physical activity.
  •  
5.
  •  
6.
  • Barker, CJ, et al. (författare)
  • Phosphorylated inositol compounds in beta -cell stimulus-response coupling
  • 2002
  • Ingår i: American journal of physiology. Endocrinology and metabolism. - : American Physiological Society. - 0193-1849 .- 1522-1555. ; 283:6, s. E1113-E1122
  • Tidskriftsartikel (refereegranskat)abstract
    • Pancreatic β-cell function is essential for the regulation of glucose homeostasis in humans, and its impairment leads to the development of type 2 diabetes. Inputs from glucose and cell surface receptors act together to initiate the β-cell stimulus-response coupling that ultimately leads to the release of insulin. Phosphorylated inositol compounds have recently emerged as key players at all levels of the stimulus-secretion coupling process. In this current review, we seek to highlight recent advances in β-cell phosphoinositide research by dividing our examination into two sections. The first involves the events that lead to insulin secretion. This includes both new roles for inositol polyphosphates, particularly inositol hexakisphosphate, and both conventional and 3-phosphorylated inositol lipids. In the second section, we deal with the more novel concept of the autocrine role of insulin. Here, released insulin initiates signal transduction cascades, principally through the activity of phosphatidylinositol 3-kinase. This new round of signal transduction has been established to activate key β-cell genes, particularly the insulin gene itself. More controversially, this insulin feedback has also been suggested to either terminate or enhance insulin secretion events.
  •  
7.
  • Blomqvist, G, et al. (författare)
  • Effect of acute hyperketonemia on the cerebral uptake of ketone bodies in nondiabetic subjects and IDDM patients
  • 2002
  • Ingår i: American journal of physiology. Endocrinology and metabolism. - : American Physiological Society. - 0193-1849 .- 1522-1555. ; 283:1, s. E20-E28
  • Tidskriftsartikel (refereegranskat)abstract
    • Using R-β-[1-11C]hydroxybutyrate and positron emission tomography, we studied the effect of acute hyperketonemia (range 0.7–1.7 μmol/ml) on cerebral ketone body utilization in six nondiabetic subjects and six insulin-dependent diabetes mellitus (IDDM) patients with average metabolic control (HbA1c = 8.1 ± 1.7%). An infusion of unlabeled R-β-hydroxybutyrate was started 1 h before the bolus injection of R-β-[1-11C]hydroxybutyrate. The time course of the radioactivity in the brain was measured during 10 min. For both groups, the utilization rate of ketone bodies was found to increase nearly proportionally with the plasma concentration of ketone bodies (1.0 ± 0.3 μmol/ml for nondiabetic subjects and 1.3 ± 0.3 μmol/ml for IDDM patients). No transport of ketone bodies from the brain could be detected. This result, together with a recent study of the tissue concentration of R-β-hydroxybutyrate in the brain by magnetic resonance spectroscopy, indicate that, also at acute hyperketonemia, the rate-limiting step for ketone body utilization is the transport into the brain. No significant difference in transport and utilization of ketone bodies could be detected between the nondiabetic subjects and the IDDM patients.
  •  
8.
  • Blomstrand, Eva, et al. (författare)
  • BCAA intake affects protein metabolism in muscle after but not during exercise in humans.
  • 2001
  • Ingår i: American Journal of Physiology. Endocrinology and Metabolism. - 0193-1849 .- 1522-1555. ; 281:2, s. E365-74
  • Tidskriftsartikel (refereegranskat)abstract
    • Branched-chain amino acids (BCAA) or a placebo was given to seven subjects during 1 h of ergometer cycle exercise and a 2-h recovery period. Intake of BCAA did not influence the rate of exchange of the aromatic amino acids, tyrosine and phenylalanine, in the legs during exercise or the increase in their concentration in muscle. The increase was approximately 30% in both conditions. On the other hand, in the recovery period after exercise, a faster decrease in the muscle concentration of aromatic amino acids was found in the BCAA experiment (46% compared with 25% in the placebo condition). There was also a tendency to a smaller release (an average of 32%) of these amino acids from the legs during the 2-h recovery. The results suggest that BCAA have a protein-sparing effect during the recovery after exercise, either that protein synthesis has been stimulated and/or protein degradation has decreased, but the data during exercise are too variable to make any conclusions about the effects during exercise. The effect in the recovery period does not seem to be mediated by insulin.
  •  
9.
  •  
10.
  • Chisalita, Simona Ioana, 1972-, et al. (författare)
  • Insulin-like growth factor I receptors are more abundant than insulin receptors in human micro- and macrovascular endothelial cells
  • 2004
  • Ingår i: American Journal of Physiology. Endocrinology and Metabolism. - : American Physiological Society. - 0193-1849 .- 1522-1555. ; 286, s. E896-E901
  • Tidskriftsartikel (refereegranskat)abstract
    • Micro- and macroangiopathy are major causes of morbidity and mortality in patients with diabetes. Our aim was to characterize IGF-I receptor (IGF-IR) and insulin receptor (IR) in human micro- and macrovascular endothelial cells. Cultured human dermal microvascular endothelial cells (HMVEC) and human aortic endothelial cells (HAEC) were used. Gene expression was measured by quantitative real-time RT-PCR and receptor protein by ligand-binding assay. Phosphorylation of IGF-IR ß-subunit was analyzed by immunoprecipitation and Western blot. Glucose metabolism and DNA synthesis was assessed using [3H]glucose and [3H]thymidine incorporation, respectively. We detected gene expression of IGF-IR and IR in HAEC and HMVEC. IGF-IR gene expression was severalfold higher than that of IR. The specific binding of 125I-IGF-I was higher than that of 125I-insulin in HAEC and HMVEC. Insulin and the new, long-acting insulin analog glargine interacted with the IGF-IR with thousand- and hundred-fold less potency than IGF-I itself. Phosphorylation of the IGF-IR ß-subunit was shown in HAEC for IGF-I (10-8 M) and insulin (10-6 M) and in HMVEC for IGF-I and glargine (10-8 M, 10-6 M). IGF-I 10-7 M stimulated incorporation of [3H]thymidine into DNA, and 10-9–10-7 M also the incorporation of [3H]glucose in HMVEC, whereas glargine and insulin had no significant effects at 10-9–10-7 M. Human micro- and macrovascular endothelial cells express more IGF-IR than IR. IGF-I and high concentrations of glargine and insulin  ctivates the IGF-IR. Glargine has a higher affinity than insulin for the IGF-IR but probably has no effect on DNA synthesis at concentrations reached in vivo.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 50

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy