SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0264 6021 ;srt2:(1980-1989);srt2:(1988)"

Sökning: L773:0264 6021 > (1980-1989) > (1988)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andersson, C, et al. (författare)
  • Activation and inhibition of microsomal glutathione transferase from mouse liver.
  • 1988
  • Ingår i: Biochemical Journal. - 0264-6021 .- 1470-8728. ; 249:3, s. 819-23
  • Tidskriftsartikel (refereegranskat)abstract
    • Mouse liver microsomal glutathione transferase was purified in an N-ethylmaleimide-activated as well as an unactivated form. The enzyme had a molecular mass of 17 kDa and a pI of 8.8. It showed cross-reactivity with antibodies raised against rat liver microsomal glutathione transferase, but not with any of the available antisera raised against cytosolic glutathione transferases. The fully N-ethylmaleimide-activated enzyme could be further activated 1.5-fold by inclusion of 1 microM-bromosulphophthalein in the assay system. The latter effect was reversible, which was not the case for the N-ethylmaleimide activation. At 20 microM-bromosulphophthalein the activated microsomal glutathione transferase was strongly inhibited, while the unactivated form was activated 2.5-fold. Inhibitors of the microsomal glutathione transferase from mouse liver showed either about the same I50 values for the activated and the unactivated form of the enzyme, or significantly lower I50 values for the activated form compared with the unactivated form. The low I50 values and the steep slope of the activity-versus-inhibitor-concentration curves for the latter group of inhibitors tested on the activated enzyme indicate a co-operative effect involving conversion of activated enzyme into the unactivated form, as well as conventional inhibition of the enzyme.
  •  
2.
  • Danielson, U Helena, et al. (författare)
  • Paradoxical inhibition of rat glutathione transferase 4-4 by indomethacin explained by substrate-inhibitor-enzyme complexes in a random-order sequential mechanism
  • 1988
  • Ingår i: Biochemical Journal. - 0264-6021 .- 1470-8728. ; 250:3, s. 705-711
  • Tidskriftsartikel (refereegranskat)abstract
    • Under standard assay conditions, with 1-chloro-2,4-dinitrobenzene (CDNB) as electrophilic substrate, rat glutathione transferase 4-4 is strongly inhibited (I50 = 1 microM) by indomethacin. No other glutathione transferase investigated is significantly inhibited by micromolar concentrations of indomethacin. Paradoxically, the strong inhibition of glutathione transferase 4-4 was dependent on high (millimolar) concentrations of CDNB; at low concentrations of this substrate or with other substrates the effect of indomethacin on the enzyme was similar to the moderate inhibition noted for other glutathione transferases. In general, the inhibition of glutathione transferases can be explained by a random-order sequential mechanism, in which indomethacin acts as a competitive inhibitor with respect to the electrophilic substrate. In the specific case of glutathione transferase 4-4 with CDNB as substrate, indomethacin binds to enzyme-CDNB and enzyme-CDNB-GSH complexes with an even greater affinity than to the corresponding complexes lacking CDNB. Under presumed physiological conditions with low concentrations of electrophilic substrates, indomethacin is not specific for glutathione transferase 4-4 and may inhibit all forms of glutathione transferase.
  •  
3.
  • Gierow, Peter, et al. (författare)
  • Lateral heterogeneity of rat liver plasma membranes analysed by counter-current distribution
  • 1988
  • Ingår i: Biochemical Journal. - 0264-6021 .- 1470-8728. ; 249, s. 369-375
  • Tidskriftsartikel (refereegranskat)abstract
    • The lateral heterogeneity of rat liver plasma membranes was examined by fragmentation and fractionation by counter-current distribution in an aqueous two-phase polymer system. The distribution pattern was analysed by plotting the relative specific activities of marker components against each other. By this analysis asialo-orosomucoid receptors were found in a domain separated from domains containing 5'-nucleotidase and leucine aminopeptidase by another domain devoid of these markers. 5'Nucleotidase and leucine aminopeptidase resided in adjacent but separate domains. The experimental data were compared with corresponding plots of markers in model membranes. The model membranes yielded plots of different shapes depending on marker distribution and fragment size. This method of analysis should be useful for examining the lateral heterogeneity also of other membranes. 
  •  
4.
  • Lidholt, Kerstin, et al. (författare)
  • Biosynthesis of heparin : Modulation of polysaccharide chain length in a cell-free system
  • 1988
  • Ingår i: Biochemical Journal. - 0264-6021 .- 1470-8728. ; 254:2, s. 571-578
  • Tidskriftsartikel (refereegranskat)abstract
    • The formation of heparin-precursor polysaccharide (N-acetylheparosan) was studied with a mouse mastocytoma microsomal fraction. Incubation of this fraction with UDP-[3H]GlcA and UDP-GlcNAc yielded labelled macromolecules that could be depolymerized, apparently to single polysaccharide chains, by alkali treatment, and thus were assumed to be proteoglycans. Label from UDP-[3H]GlcA (approx. 3 microM) is transiently incorporated into microsomal polysaccharide even in the absence of added UDP-GlcNAc, probably owing to the presence of endogenous sugar nucleotide. When the concentration of exogenous UDP-GlcNAc was increased to 25 microM the rate of incorporation of 3H increased and proteoglycans carrying polysaccharide chains with an Mr of approx. 110,000 were produced. Increasing the UDP-GlcNAc concentration to 5 mM led to an approx. 4-fold decrease in the rate of 3H incorporation and a decrease in the Mr of the resulting polysaccharide chains to approx. 6000 (predominant component). When both UDP-GlcA and UDP-GlcNAc were present at high concentrations (5 mM) the rate of polymerization and the polysaccharide chain size were again increased. The results suggest that the inhibition of polymerization observed at grossly different concentrations of the two sugar nucleotides, UDP-GlcA and UDP-GlcNAc, may be due either to interference with the transport of one of these precursors across the Golgi membrane or to competitive inhibition of one of the glycosyltransferases. The maximal rate of chain elongation obtained, under the conditions employed, was about 40 disaccharide units/min. The final length of the polysaccharide chains was directly related to the rate of the polymerization reaction.
  •  
5.
  • Söderström, Mats, et al. (författare)
  • Leukotriene C synthase in mouse mastocytoma cells. An enzyme distinct from cytosolic and microsomal glutathione transferases
  • 1988
  • Ingår i: Biochemical Journal. - : Portland Press. - 0264-6021 .- 1470-8728. ; 250:3, s. 713-718
  • Tidskriftsartikel (refereegranskat)abstract
    • Leukotriene C4 synthesis was studied in preparations from mouse mastocytoma cells. Enzymic conjugation of leukotriene A4 with glutathione was catalysed by both the cytosol and the microsomal fraction. The specific activity of the microsomal fraction (7.8 nmol/min per mg of protein) was 17 times that of the cytosol fraction. The cytosol fraction of the mastocytoma cells contained two glutathione transferases, which were purified to homogeneity and characterized. A microsomal glutathione transferase was purified from mouse liver; this enzyme was shown by immunoblot analysis to be present in the mastocytoma microsomal fraction at a concentration one-tenth or less of that in the liver microsomal fraction. Both the cytosolic and the microsomal glutathione transferases in the mastocytoma cells were identified with enzymes previously characterized, by determining specific activities with various substrates, sensitivities to inhibitors, reactions with antibodies, and physical properties. The purified microsomal glutathione transferase from liver was inactive with leukotriene A4 or its methyl ester as substrate. The cytosolic enzymes displayed activity with leukotriene A4, but their specific activities and intracellular concentrations were too low to account for the leukotriene C4 formation in the mastocytoma cells. The microsomal fraction of the cells contained an enzyme distinguishable by various criteria from the previously studied glutathione transferases. This membrane-bound enzyme, leukotriene C synthase (leukotriene A4:glutathione S-leukotrienyltransferase), appears to carry the main responsibility for the biosynthesis of leukotriene C4.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy