SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0364 5134 OR L773:1531 8249 srt2:(2010-2014)"

Sökning: L773:0364 5134 OR L773:1531 8249 > (2010-2014)

  • Resultat 1-10 av 41
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bennet, Laura, et al. (författare)
  • Cell therapy for neonatal hypoxia-ischemia and cerebral palsy.
  • 2012
  • Ingår i: Annals of neurology. - : Wiley. - 1531-8249 .- 0364-5134. ; 71:5, s. 589-600
  • Tidskriftsartikel (refereegranskat)abstract
    • Perinatal hypoxic-ischemic brain injury remains a major cause of cerebral palsy. Although therapeutic hypothermia is now established to improve recovery from hypoxia-ischemia (HI) at term, many infants continue to survive with disability, and hypothermia has not yet been tested in preterm infants. There is increasing evidence from in vitro and in vivo preclinical studies that stem/progenitor cells may have multiple beneficial effects on outcome after hypoxic-ischemic injury. Stem/progenitor cells have shown great promise in animal studies in decreasing neurological impairment; however, the mechanisms of action of stem cells, and the optimal type, dose, and method of administration remain surprisingly unclear, and some studies have found no benefit. Although cell-based interventions after completion of the majority of secondary cell death appear to have potential to improve functional outcome for neonates after HI, further rigorous testing in translational animal models is required before randomized controlled trials should be considered.
  •  
2.
  •  
3.
  • Biffi, Alessandro, et al. (författare)
  • Variants at APOE Influence Risk of Deep and Lobar Intracerebral Hemorrhage
  • 2010
  • Ingår i: Annals of Neurology. - : Wiley. - 1531-8249 .- 0364-5134. ; 68:6, s. 934-943
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Prior studies investigating the association between APOE alleles epsilon 2/epsilon 4 and risk of intracerebral hemorrhage (ICH) have been inconsistent and limited to small sample sizes, and did not account for confounding by population stratification or determine which genetic risk model was best applied. Methods: We performed a large-scale genetic association study of 2189 ICH cases and 4041 controls from 7 cohorts, which were analyzed using additive models for epsilon 2 and epsilon 4. Results were subsequently meta-analyzed using a random effects model. A proportion of the individuals (322 cases, 357 controls) had available genome-wide data to adjust for population stratification. Results: Alleles epsilon 2 and epsilon 4 were associated with lobar ICH at genome-wide significance levels (odds ratio [OR] = 1.82, 95% confidence interval [CI] = 1.50-2.23, p = 6.6 x 10(-10); and OR = 2.20, 95%CI = 1.85-2.63, p = 2.4 x 10(-11), respectively). Restriction of analysis to definite/probable cerebral amyloid angiopathy ICH uncovered a stronger effect. Allele epsilon 4 was also associated with increased risk for deep ICH (OR = 1.21, 95% CI = 1.08-1.36, p = 2.6 x 10(-4)). Risk prediction evaluation identified the additive model as best for describing the effect of APOE genotypes. Interpretation: APOE epsilon 2 and epsilon 4 are independent risk factors for lobar ICH, consistent with their known associations with amyloid biology. In addition, we present preliminary findings on a novel association between APOE epsilon 4 and deep ICH. Finally, we demonstrate that an additive model for these APOE variants is superior to other forms of genetic risk modeling previously applied. ANN NEUROL 2010;68:934-943
  •  
4.
  • Bolouri, Hayde, 1957, et al. (författare)
  • Innate defence regulator peptide 1018 protects against perinatal brain injury.
  • 2014
  • Ingår i: Annals of neurology. - : Wiley. - 1531-8249 .- 0364-5134. ; 75:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: There is currently no pharmacological treatment that provides protection against brain injury in neonates. It is known that activation of an innate immune response is a key, contributing factor in perinatal brain injury, therefore, the neuroprotective therapeutic potential of innate defence regulator peptides (IDRs) was investigated. Methods: The anti-inflammatory effects of three IDRs was measured in LPS-activated murine microglia. IDRs were then assessed for their ability to confer neuroprotection in vivo when given 3h after neonatal brain injury in a clinically relevant model that combines an inflammatory challenge (LPS) with hypoxia-ischemia (HI). To gain insight into peptide-mediated effects on LPS-induced inflammation and neuroprotective mechanisms, global cerebral gene expression patterns were analyzed in pups that were treated with IDR-1018 either 4 h before LPS or 3h after LPS+HI. Results: IDR-1018 reduced inflammatory mediators produced by LPS-stimulated microglia cells in vitro and modulated LPS-induced neuroinflammation in vivo. When administered 3h after LPS+HI, IDR-1018 exerted effects on regulatory molecules of apoptotic (for e.g. Fadd and Tnfsf9) and inflammatory (for e.g. IL-1, TNF-α, chemokines and cell adhesion molecules) pathways and showed marked protection of both white and grey brain matter. Interpretation: IDR-1018 supresses pro-inflammatory mediators and cell injurious mechanisms in the developing brain, and post-insult treatment is efficacious in reducing LPS-induced hypoxic-ischemic brain damage. IDR-1018 is effective in the brain when given systemically, confers neuroprotection of both grey and white matter, and lacks significant effects on the brain under normal conditions. Thus this peptide provides the features of a promising neuroprotective agent in newborns with brain injury. ANN NEUROL 2013. © 2013 American Neurological Association.
  •  
5.
  • Carlsson, Ylva, 1975, et al. (författare)
  • Genetic inhibition of caspase-2 reduces hypoxic-ischemic and excitotoxic neonatal brain injury.
  • 2011
  • Ingår i: Annals of neurology. - : Wiley. - 1531-8249 .- 0364-5134. ; 70:5, s. 781-9
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: Perinatal brain injury is a major cause of neurodevelopmental handicaps. Multiple pathways of oxidant stress, inflammation, and excitotoxicity lead to cell damage and death, including caspase-dependent apoptosis. Caspase-2 (Casp2; Nedd-2, Ich-1) is a developmentally regulated initiator caspase, which poorly cleaves other caspases but can initiate mitochondrial outer membrane permeabilization. We have investigated if Casp2 could mediate perinatal ischemic brain damage. METHODS: Casp2 expression in human neonatal brains and developmental patterns in rats and mice were evaluated. Casp2-deficient (Casp2(-/-) ), wild-type (WT), and heterozygous (Casp2(+/-) ) newborn C57BL/6 mice were subjected to hypoxia-ischemia (unilateral carotid occlusion + exposure to 10% oxygen for 50 minutes) or intracerebral injection of the excitotoxic N-methyl-D-aspartate-receptor agonist ibotenate. In addition, Casp2 specific siRNAs were preinjected into the brain of WT newborn mice 24 hours before ibotenate treatment. Brain tissues were examined by immunohistochemical staining (cresyl violet, MAP2, NF68, Casp2, Casp3) and Western blotting. Lesion volumes and injury in the cortical plates and white matter were quantified together with activated Casp3. RESULTS: Casp2 is highly expressed in the neonatal brain. Casp2-deficient mice subjected to hypoxia-ischemia at postnatal day 9 present significantly lower cerebral infarction, reduced white matter injury, and reduced Casp3 activation in the thalamus and hippocampus. Both Casp2(-/-) mice and siRNA-administered WT mice conferred reduction of gray and white matter injury after excitotoxic insult at postnatal day 5. Casp3 activation was also found reduced in Casp2-deficient mice subjected to excitotoxicity. INTERPRETATION: These data suggest for the first time a role of Casp2 in neonatal brain damage. ANN NEUROL 2011;
  •  
6.
  • Dean, Justin M, et al. (författare)
  • Delayed cortical impairment following lipopolysaccharide exposure in preterm fetal sheep.
  • 2011
  • Ingår i: Annals of neurology. - : Wiley. - 1531-8249 .- 0364-5134. ; 70:5
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: Preterm infants exhibit chronic deficits in white matter (WM) and cortical maturation. Although fetal infection/inflammation may contribute to WM pathology, the factors contributing to cortical changes are largely unknown. We examined the effect of fetal lipopolysaccharide (LPS) exposure on WM and cortical development as assessed by magnetic resonance imaging (MRI), electroencephalography (EEG), and histopathology in fetal sheep at preterm human equivalent age. METHODS: LPS was administered to fetal sheep at 102.5 ± 0.5 days of gestation. Continuous biophysical recordings were analyzed for 10 days after LPS. At postmortem, measurement of cerebral WM and cortical tissue volumes was achieved by stereological techniques. Specific effects of LPS on MRI-assessed T(1) -weighted and T(2) -weighted images, and immunohistochemical expression of oligodendrocytes, proliferating cells, cortical NeuN-positive and Nurr1-positive neurons (subplate marker), and cell death mechanisms were examined. RESULTS: We observed reductions in WM (∼21%; LPS, 1.19 ± 0.04 vs control, 1.51 ± 0.07cm(3) ; p < 0.001) and cortical (∼18%; LPS, 2.34 ± 0.10 vs control, 2.85 ± 0.07cm(3) ; p < 0.001) volumes, associated with overt and diffuse WM injury, T(1) -/T(2) -weighted signal alterations, and reduced numbers of WM oligodendrocytes (LPS, 485 ± 31 vs control, 699 ± 69 cells/mm(2) ; p = 0.0189) and NeuN-positive (LPS, 421 ± 71 vs control 718 ± 92 cells/mm(2) ; p = 0.04) and Nurr1-positive (control, 2.5 ± 0.6 vs LPS, 0.6 ± 0.1 cells/mm(2) ; p = 0.007) cortical neurons after LPS. Moreover, there was loss of the normal maturational increase in cortical EEG amplitude, which correlated with reduced cortical volumes. INTERPRETATION: Fetal exposure to LPS prior to myelination onset can impair both white matter and cortical development in a preclinical large animal model, supporting a role for maternal/fetal infection in the pathogenesis of preterm brain injury. ANN NEUROL 2011.
  •  
7.
  • Desikan, Rahul S, et al. (författare)
  • Amyloid-β associated volume loss occurs only in the presence of phospho-tau.
  • 2011
  • Ingår i: Annals of neurology. - : Wiley. - 1531-8249 .- 0364-5134. ; 70:4, s. 657-61
  • Tidskriftsartikel (refereegranskat)abstract
    • The relationship between neurodegeneration and the 2 hallmark proteins of Alzheimer's disease, amyloid-β (Aβ) and tau, is still unclear. Here, we examined 286 nondemented participants (107 cognitively normal older adults and 179 memory impaired individuals) who underwent longitudinal magnetic resonance (MR) imaging and lumbar puncture. Using mixed effects models, we investigated the relationship between longitudinal entorhinal cortex atrophy rate, cerebrospinal fluid (CSF) p-tau(181p) and CSF Aβ(1-42) . We found a significant relationship between elevated entorhinal cortex atrophy rate and decreased CSF Aβ(1-42) only with elevated CSF p-tau(181p) . Our findings indicate that Aβ-associated volume loss occurs only in the presence of phospho-tau in humans at risk for dementia.
  •  
8.
  • Diekstra, Frank P., et al. (författare)
  • C9orf72 and UNC13A Are Shared Risk Loci for Amyotrophic Lateral Sclerosis and Frontotemporal Dementia : A Genome-Wide Meta-Analysis
  • 2014
  • Ingår i: Annals of Neurology. - : John Wiley & Sons. - 0364-5134 .- 1531-8249. ; 76:1, s. 120-133
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Substantial clinical, pathological, and genetic overlap exists between amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). TDP-43 inclusions have been found in both ALS and FTD cases (FTD-TDP). Recently, a repeat expansion in C9orf72 was identified as the causal variant in a proportion of ALS and FTD cases. We sought to identify additional evidence for a common genetic basis for the spectrum of ALS-FTD. Methods: We used published genome-wide association studies data for 4,377 ALS patients and 13,017 controls, and 435 pathology-proven FTD-TDP cases and 1,414 controls for genotype imputation. Data were analyzed in a joint meta-analysis, by replicating topmost associated hits of one disease in the other, and by using a conservative rank products analysis, allocating equal weight to ALS and FTD-TDP sample sizes. Results: Meta-analysis identified 19 genome-wide significant single nucleotide polymorphisms (SNPs) in C9orf72 on chromosome 9p21.2 (lowest p = 2.6 x 10(-12)) and 1 SNP in UNC13A on chromosome 19p13.11 (p = 1.0 x 10(-11)) as shared susceptibility loci for ALS and FTD-TDP. Conditioning on the 9p21.2 genotype increased statistical significance at UNC13A. A third signal, on chromosome 8q24.13 at the SPG8 locus coding for strumpellin (p = 3.91 x 10(-7)) was replicated in an independent cohort of 4,056 ALS patients and 3,958 controls (p = 0.026; combined analysis p = 1.01 x 10(-7)). Interpretation: We identified common genetic variants in C9orf72, but in addition in UNC13A that are shared between ALS and FTD. UNC13A provides a novel link between ALS and FTD-TDP, and identifies changes in neurotransmitter release and synaptic function as a converging mechanism in the pathogenesis of ALS and FTD-TDP.
  •  
9.
  • Elbaz, Alexis, et al. (författare)
  • Independent and Joint Effects of the MAPT and SNCA Genes in Parkinson Disease
  • 2011
  • Ingår i: Annals of Neurology. - : Wiley. - 1531-8249 .- 0364-5134. ; 69:5, s. 778-792
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: We studied the independent and joint effects of the genes encoding alpha-synuclein (SNCA) and microtubule-associated protein tau (MAPT) in Parkinson disease (PD) as part of a large meta-analysis of individual data from case-control studies participating in the Genetic Epidemiology of Parkinson's Disease (GEO-PD) consortium. Methods: Participants of Caucasian ancestry were genotyped for a total of 4 SNCA (rs2583988, rs181489, rs356219, rs11931074) and 2 MAPT (rs1052553, rs242557) single nucleotide polymorphism (SNPs). Individual and joint effects of SNCA and MAPT SNPs were investigated using fixed- and random-effects logistic regression models. Interactions were studied on both a multiplicative and an additive scale, and using a case-control and case-only approach. Results: Fifteen GEO-PD sites contributed a total of 5,302 cases and 4,161 controls. All 4 SNCA SNPs and the MAPT H1-haplotype-defining SNP (rs1052553) displayed a highly significant marginal association with PD at the significance level adjusted for multiple comparisons. For SNCA, the strongest associations were observed for SNPs located at the 30 end of the gene. There was no evidence of statistical interaction between any of the 4 SNCA SNPs and rs1052553 or rs242557, neither on the multiplicative nor on the additive scale. Interpretation: This study confirms the association between PD and both SNCA SNPs and the H1 MAPT haplotype. It shows, based on a variety of approaches, that the joint action of variants in these 2 loci is consistent with independent effects of the genes without additional interacting effects. ANN NEUROL 2011; 69: 778-792
  •  
10.
  • Favrais, Géraldine, et al. (författare)
  • Systemic inflammation disrupts the developmental program of white matter.
  • 2011
  • Ingår i: Annals of neurology. - : Wiley. - 1531-8249 .- 0364-5134. ; 70:4
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: Perinatal inflammation is a major risk factor for neurological deficits in preterm infants. Several experimental studies have shown that systemic inflammation can alter the programming of the developing brain. However, these studies do not offer detailed pathophysiological mechanisms, and they rely on relatively severe infectious or inflammatory stimuli that most likely do not reflect the levels of systemic inflammation observed in many human preterm infants. The goal of the present study was to test the hypothesis that moderate systemic inflammation is sufficient to alter white matter development. METHODS: Newborn mice received twice-daily intraperitoneal injections of interleukin-1β (IL-1β) over 5 days and were studied for myelination, oligodendrogenesis, and behavior and with magnetic resonance imaging (MRI). RESULTS: Mice exposed to IL-1β had a long-lasting myelination defect that was characterized by an increased number of nonmyelinated axons. They also displayed a reduction of the diameter of the myelinated axons. In addition, IL-1β induced a significant reduction of the density of myelinating oligodendrocytes accompanied by an increased density of oligodendrocyte progenitors, suggesting a partial blockade in the oligodendrocyte maturation process. Accordingly, IL-1β disrupted the coordinated expression of several transcription factors known to control oligodendrocyte maturation. These cellular and molecular abnormalities were correlated with a reduced white matter fractional anisotropy on diffusion tensor imaging and with memory deficits. INTERPRETATION: Moderate perinatal systemic inflammation alters the developmental program of the white matter. This insult induces a long-lasting myelination deficit accompanied by cognitive defects and MRI abnormalities, further supporting the clinical relevance of the present data. ANN NEUROL 2011.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 41

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy