SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1354 1013 OR L773:1365 2486 srt2:(2000-2004)"

Sökning: L773:1354 1013 OR L773:1365 2486 > (2000-2004)

  • Resultat 1-10 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Algesten, Grete, et al. (författare)
  • Role of lakes for organic carbon cycling in the boreal zone
  • 2004
  • Ingår i: Global Change Biology. - Oxford : Blackwell Scientific. - 1354-1013 .- 1365-2486. ; 10:1, s. 141-147
  • Tidskriftsartikel (refereegranskat)abstract
    • We calculated the carbon loss (mineralization plus sedimentation) and net CO2 escape to the atmosphere for 79 536 lakes and total running water in 21 major Scandinavian catchments (size range 437–48 263 km2). Between 30% and 80% of the total organic carbon that entered the freshwater ecosystems was lost in lakes. Mineralization in lakes and subsequent CO2 emission to the atmosphere was by far the most important carbon loss process. The withdrawal capacity of lakes on the catchment scale was closely correlated to the mean residence time of surface water in the catchment, and to some extent to the annual mean temperature represented by latitude. This result implies that variation of the hydrology can be a more important determinant of CO2 emission from lakes than temperature fluctuations. Mineralization of terrestrially derived organic carbon in lakes is an important regulator of organic carbon export to the sea and may affect the net exchange of CO2 between the atmosphere and the boreal landscape.
  •  
2.
  • Berendse, F, et al. (författare)
  • Raised atmospheric CO2 levels and increased N deposition cause shifts in plant species composition and production in Sphagnum bogs
  • 2001
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 7:5, s. 591-598
  • Tidskriftsartikel (refereegranskat)abstract
    • Part of the missing sink in the global CO2 budget has been attributed to the positive effects of CO2 fertilization and N deposition on carbon sequestration in Northern Hemisphere terrestrial ecosystems. The genus Sphagnum is one of the most important groups of plant species sequestrating carbon in temperate and northern bog ecosystems, because of the low decomposability of the dead material it produces. The effects of raised CO2 and increased atmospheric N deposition on growth of Sphagnum and other plants were studied in bogs at four sites across Western Europe. Contrary to expectations, elevated CO2 did not significantly affect Sphagnum biomass growth. Increased N deposition reduced Sphagnum mass growth, because it increased the cover of vascular plants and the tall moss Polytrichum strictum. Such changes in plant species composition may decrease carbon sequestration in Sphagnum-dominated bog ecosystems.
  •  
3.
  • Martens, C.S., et al. (författare)
  • Radon fluxes in tropical forest ecosystems of Brazilian Amazonia: night-time CO2 net ecosystem exchange derived from radon and eddy covariance methods.
  • 2004
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 10:5, s. 618-629
  • Tidskriftsartikel (refereegranskat)abstract
    • Radon-222 (Rn-222) is used as a transport tracer of forest canopy–atmosphere CO2 exchange in an old-growth, tropical rain forest site near km 67 of the Tapajós National Forest, Pará, Brazil. Initial results, from month-long periods at the end of the wet season (June–July) and the end of the dry season (November–December) in 2001, demonstrate the potential of new Rn measurement instruments and methods to quantify mass transport processes between forest canopies and the atmosphere. Gas exchange rates yield mean canopy air residence times ranging from minutes during turbulent daytime hours to greater than 12 h during calm nights. Rn is an effective tracer for net ecosystem exchange of CO2 (CO2 NEE) during calm, night-time hours when eddy covariance-based NEE measurements are less certain because of low atmospheric turbulence. Rn-derived night-time CO2 NEE (9.00±0.99 μmol m−2 s−1 in the wet season, 6.39±0.59 in the dry season) was significantly higher than raw uncorrected, eddy covariance-derived CO2 NEE (5.96±0.51 wet season, 5.57±0.53 dry season), but agrees with corrected eddy covariance results (8.65±1.07 wet season, 6.56±0.73 dry season) derived by filtering out lower NEE values obtained during calm periods using independent meteorological criteria. The Rn CO2 results suggest that uncorrected eddy covariance values underestimate night-time CO2 loss at this site. If generalizable to other sites, these observations indicate that previous reports of strong net CO2 uptake in Amazonian terra firme forest may be overestimated.
  •  
4.
  • Smith, K.A., et al. (författare)
  • Oxidation of atmospheric methane in Northern European soils, comparison with other ecosystems, and uncertainties in the global terrestrial sink
  • 2000
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 6:7, s. 791-803
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper reports the range and statistical distribution of oxidation rates of atmospheric CH4 in soils found in Northern Europe in an international study, and compares them with published data for various other ecosystems. It reassesses the size, and the uncertainty in, the global terrestrial CH4 sink, and examines the effect of land-use change and other factors on the oxidation rate. Only soils with a very high water table were sources of CH4, all others were sinks. Oxidation rates varied from 1 to nearly 200 µg CH4 m-2 h-1, annual rates for sites measured for =1 y were 0.1-9.1 kg CH4 ha-1 y-1, with a log-normal distribution (log-mean ~ 1.6 kg CH4 ha-1 y-1). Conversion of natural soils to agriculture reduced oxidation rates by two-thirds - closely similar to results reported for other regions. N inputs also decreased oxidation rates. Full recovery of rates after these disturbances takes > 100 y. Soil bulk density, water content and gas diffusivity had major impacts on oxidation rates. Trends were similar to those derived from other published work. Increasing acidity reduced oxidation, partially but not wholly explained by poor diffusion through litter layers which did not themselves contribute to the oxidation. The effect of temperature was small, attributed to substrate limitation and low atmospheric concentration. Analysis of all available data for CH4 oxidation rates in situ showed similar log-normal distributions to those obtained for our results, with generally little difference between different natural ecosystems, or between short-and longer-term studies. The overall global terrestrial sink was estimated at 29 Tg CH4 y-1, close to the current IPCC assessment, but with a much wider uncertainty range (7 to > 100 Tg CH4 y-1). Little or no information is available for many major ecosystems, these should receive high priority in future research.
  •  
5.
  • Belyea, L R, et al. (författare)
  • Carbon sequestration in peatland: patterns and mechanisms of response to climate change
  • 2004
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013. ; 10:7, s. 1043-1052
  • Tidskriftsartikel (refereegranskat)abstract
    • The response of peatlands to changes in the climatic water budget is crucial to predicting potential feedbacks on the global carbon (C) cycle. To gain insight on the patterns and mechanisms of response, we linked a model of peat accumulation to a model of peatland hydrology, then applied these models to empirical data spanning the past 5000 years for the large mire Store Mosse in southern Sweden. We estimated parameters for C sequestration and height growth by fitting the peat accumulation model to two age profiles. Then, we used independent reconstruction of climate wetness and model reconstruction of bog height to examine changes in peatland hydrology. Reconstructions of C sequestration showed two distinct patterns of behaviour: abrupt increases associated with major transitions in vegetation and dominant Sphagnum species (fuscum, rubellum-fuscum and magellanicum stages), and gradual decreases associated with increasing humification of newly formed peat. Carbon sequestration rate ranged from a minimum of 14 to a maximum of 72 g m(-2) yr(-1), with the most rapid changes occurring in the past 1000 years. Vegetation transitions were associated with periods of increasing climate wetness during which the hydrological requirement for increased seepage loss was met by rise of the water table closer to the peatland surface, with the indirect result of enhancing peat formation. Gradual decline in C sequestration within each vegetation stage resulted from enhanced litter decay losses from the near-surface layer. In the first two vegetation stages, peatland development (i.e., increasing surface gradient) and decreasing climate wetness drove a gradual increase in thickness of the unsaturated, near-surface layer, reducing seepage water loss and peat formation. In the most recent vegetation stage, the surface diverged into a mosaic of wet and dry microsites. Despite a steady increase in climate wetness, C sequestration declined rapidly. The complexity of response to climate change cautions against use of past rates to estimate current or to predict future rates of peatland C sequestration. Understanding interactions among hydrology, surface structure and peat formation are essential to predicting potential feedback on the global C cycle.
  •  
6.
  • Bååth, Erland, et al. (författare)
  • Soil and rhizosphere microorganisms have the same Q(10) for respiration in a model system
  • 2003
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013. ; 9:12, s. 1788-1791
  • Tidskriftsartikel (refereegranskat)abstract
    • We compared the Q10 relationship for root-derived respiration (including respiration due to the root, external mycorrhizal mycelium and rhizosphere microorganisms) with that of mainly external ectomycorrhizal mycelium and that of bulk soil microorganisms without any roots present. This was studied in a microcosm consisting of an ectomycorrhizal Pinus muricata seedling growing in a sandy soil, and where roots were allow to colonize one soil compartment, mycorrhizal mycelium another compartment, and the last compartment consisted of root- and mycorrhiza-free soil. The respiration rate in the bulk soil compartment was 30 times lower than in the root compartment, while that in the mycorrhizal compartment was six times lower. There were no differences in Q10 (for 5-15°C) between the different compartments, indicating that there were no differences in the temperature relationship between root-associated and non-root-associated organisms. Thus, there are no indications that different Q10 values should be used for different soil organism, bulk soil or rhizosphere-associated microorganisms when modelling the effects of global climate change.
  •  
7.
  •  
8.
  • Ensminger, Ingo, et al. (författare)
  • Intermittent low temperatures constrain spring recovery of photosynthesis in boreal Scots pine forests
  • 2004
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013. ; 10:6, s. 995-1008
  • Tidskriftsartikel (refereegranskat)abstract
    • During winter and early spring, evergreen boreal conifers are severely stressed because light energy cannot be used when photosynthesis is pre-empted by low ambient temperatures. To study photosynthetic performance dynamics in a severe boreal climate, seasonal changes in photosynthetic pigments, chloroplast proteins and photochemical efficiency were studied in a Scots pine forest near Zotino, Central Siberia. In winter, downregulation of photosynthesis involved loss of chlorophylls, a twofold increase in xanthophyll cycle pigments and sustained high levels of the light stress-induced zeaxanthin pigment. The highest levels of xanthophylls and zeaxanthin did not occur during the coldest winter period, but rather in April when light was increasing, indicating an increased capacity for thermal dissipation of excitation energy at that time. Concomitantly, in early spring the D1 protein of the photosystem II (PSII) reaction centre and the light-harvesting complex of PSII dropped to their lowest annual levels. In April and May, recovery of PSII activity, chloroplast protein synthesis and rearrangements of pigments were observed as air temperatures increased above 0°C. Nevertheless, severe intermittent low-temperature episodes during this period not only halted but actually reversed the physiological recovery. During these spring low-temperature episodes, protective processes involved a complementary function of the PsbS and early light-induced protein thylakoid proteins. Full recovery of photosynthesis did not occur until the end of May. Our results show that even after winter cold hardening, photosynthetic activity in evergreens responds opportunistically to environmental change throughout the cold season. Therefore, climate change effects potentially improve the sink capacity of boreal forests for atmospheric carbon. However, earlier photosynthesis in spring in response to warmer temperatures is strongly constrained by environmental variation, counteracting the positive effects of an early recovery process.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy