SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1664 3224 srt2:(2017)"

Sökning: L773:1664 3224 > (2017)

  • Resultat 1-10 av 62
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Adriaensen, Wim, et al. (författare)
  • Immunomodulatory Therapy of Visceral Leishmaniasis in Human Immunodeficiency Virus-Coinfected Patients.
  • 2017
  • Ingår i: Frontiers in Immunology. - : Frontiers Media SA. - 1664-3224. ; 8, s. 1943-
  • Tidskriftsartikel (refereegranskat)abstract
    • Patients with visceral leishmaniasis (VL)-human immunodeficiency virus (HIV) coinfection experience increased drug toxicity and treatment failure rates compared to VL patients, with more frequent VL relapse and death. In the era of VL elimination strategies, HIV coinfection is progressively becoming a key challenge, because HIV-coinfected patients respond poorly to conventional VL treatment and play an important role in parasite transmission. With limited chemotherapeutic options and a paucity of novel anti-parasitic drugs, new interventions that target host immunity may offer an effective alternative. In this review, we first summarize current views on how VL immunopathology is significantly affected by HIV coinfection. We then review current clinical and promising preclinical immunomodulatory interventions in the field of VL and discuss how these may operate in the context of a concurrent HIV infection. Caveats are formulated as these interventions may unpredictably impact the delicate balance between boosting of beneficial VL-specific responses and deleterious immune activation/hyperinflammation, activation of latent provirus or increased HIV-susceptibility of target cells. Evidence is lacking to prioritize a target molecule and a more detailed account of the immunological status induced by the coinfection as well as surrogate markers of cure and protection are still required. We do, however, argue that virologically suppressed VL patients with a recovered immune system, in whom effective antiretroviral therapy alone is not able to restore protective immunity, can be considered a relevant target group for an immunomodulatory intervention. Finally, we provide perspectives on the translation of novel theories on synergistic immune cell cross-talk into an effective treatment strategy for VL-HIV-coinfected patients.
  •  
2.
  • Ahmad, Fareed, et al. (författare)
  • Negative Checkpoint Regulatory Molecule 2B4 (CD244) Upregulation Is Associated with Invariant Natural Killer T Cell Alterations and Human Immunodeficiency Virus Disease Progression
  • 2017
  • Ingår i: Frontiers in Immunology. - : FRONTIERS MEDIA SA. - 1664-3224. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • The CD1d-restricted invariant natural killer T (iNKT) cells are implicated in innate immune responses against human immunodeficiency virus (HIV). However, the determinants of cellular dysfunction across the iNKT cells subsets are seldom defined in HIV disease. Herein, we provide evidence for the involvement of the negative checkpoint regulator (NCR) 2B4 in iNKT cell alteration in a well-defined cohort of HIV-seropositive anti-retroviral therapy (ART) naive, ART-treated, and elite controllers (ECs). We report on exaggerated 2B4 expression on iNKT cells of HIV-infected treatment-naive individuals. In sharp contrast to CD4-iNKT cells, 2B4 expression was significantly higher on CD4+ iNKT cell subset. Notably, an increased level of 2B4 on iNKT cells was strongly correlated with parameters associated with HIV disease progression. Further, iNKT cells from ARTnaive individuals were defective in their ability to produce intracellular IFN-gamma Together, our results suggest that the levels of 2B4 expression and the downstream co-inhibitory signaling events may contribute to impaired iNKT cell responses.
  •  
3.
  • Baharom, Faezzah, et al. (författare)
  • Human Lung Mononuclear Phagocytes in Health and Disease
  • 2017
  • Ingår i: Frontiers in Immunology. - : FRONTIERS MEDIA SA. - 1664-3224. ; 8
  • Forskningsöversikt (refereegranskat)abstract
    • The lungs are vulnerable to attack by respiratory insults such as toxins, allergens, and pathogens, given their continuous exposure to the air we breathe. Our immune system has evolved to provide protection against an array of potential threats without causing collateral damage to the lung tissue. In order to swiftly detect invading pathogens, monocytes, macrophages, and dendritic cells (DCs)-together termed mononuclear phagocytes (MNPs)-line the respiratory tract with the key task of surveying the lung microenvironment in order to discriminate between harmless and harmful antigens and initiate immune responses when necessary. Each cell type excels at specific tasks: monocytes produce large amounts of cytokines, macrophages are highly phagocytic, whereas DCs excel at activating naive T cells. Extensive studies in murine models have established a division of labor between the different populations of MNPs at steady state and during infection or inflammation. However, a translation of important findings in mice is only beginning to be explored in humans, given the challenge of working with rare cells in inaccessible human tissues. Important progress has been made in recent years on the phenotype and function of human lung MNPs. In addition to a substantial population of alveolar macrophages, three subsets of DCs have been identified in the human airways at steady state. More recently, monocyte-derived cells have also been described in healthy human lungs. Depending on the source of samples, such as lung tissue resections or bronchoalveolar lavage, the specific subsets of MNPs recovered may differ. This review provides an update on existing studies investigating human respiratory MNP populations during health and disease. Often, inflammatory MNPs are found to accumulate in the lungs of patients with pulmonary conditions. In respiratory infections or inflammatory diseases, this may contribute to disease severity, but in cancer patients this may improve clinical outcomes. By expanding on this knowledge, specific lung MNPs may be targeted or modulated in order to attain favorable responses that can improve preventive or treatment strategies against respiratory infections, lung cancer, or lung inflammatory diseases.
  •  
4.
  • Baygan, Arjang, et al. (författare)
  • Safety and Side Effects of Using Placenta-Derived Decidual Stromal Cells for Graft-versus-Host Disease and Hemorrhagic Cystitis
  • 2017
  • Ingår i: Frontiers in Immunology. - : Frontiers Media SA. - 1664-3224. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Mesenchymal stromal cells (MSCs) are increasingly used in regenerate medicine. Placenta-derived decidual stromal cells (DSCs) are a novel therapy for acute graft-versus-host-disease (GVHD) and hemorrhagic cystitis (HC) after allogeneic hematopoietic stem cell transplantation (HSCT). DSCs are more immunosuppressive than MSCs. We assessed adverse events and safety using DSCs among 44 treated patients and 40 controls. The median dose of infused cells was 1.5 (range 0.9–2.9) × 106 DSCs/kg. The patients were given 2 (1–5) doses, with a total of 82 infusions. Monitoring ended 3 months after the last DSC infusion. Three patients had transient reactions during DSC infusion. Laboratory values, hemorrhages, and transfusions were similar in the two groups. The frequency of leukemic relapse (2/2, DSC/controls) and invasive fungal infections (6/6) were the same in the two groups. Causes of death were those seen in HSCT patients: infections (5/3), respiratory failure (1/1), circulatory failure (3/1), thromboembolism (1/0), multiorgan failure (0/1), and GVHD and others (2/7). One-year survival for the DSC patients with GVHD was 67%, which was significantly better than achieved previously at our center. One-year survival was 90% in the DSC-treated HC group. DSC infusions appear safe. Randomized studies are required to prove efficacy.
  •  
5.
  •  
6.
  • Bergström, Joakim, et al. (författare)
  • Epitope-Specific Suppression of IgG Responses by Passively Administered Specific IgG : Evidence of Epitope Masking
  • 2017
  • Ingår i: Frontiers in Immunology. - : Frontiers Media SA. - 1664-3224. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Specific IgG, passively administered together with particulate antigen, can completely prevent induction of antibody responses to this antigen. The ability of IgG to suppress antibody responses to sheep red blood cells (SRBCs) is intact in mice lacking Fc gamma Rs, complement factor 1q, C3, or complement receptors 1 and 2, suggesting that Fc-dependent effector functions are not involved. Two of the most widely discussed explanations for the suppressive effect are increased clearance of IgG-antigen complexes and/or that IgG "hides" the antigen from recognition by specific B cells, so-called epitope masking. The majority of data on how IgG induces suppression was obtained through studies of the effects on IgM-secreting single spleen cells during the first week after immunization. Here, we show that IgG also suppresses antigen-specific extrafollicular antibody-secreting cells, germinal center B-cells, longlived plasma cells, long-term IgG responses, and induction of memory antibody responses. IgG anti-SRBC reduced the amount of SRBC in the spleens of wild-type, but not of Fc gamma R-deficient mice. However, no correlation between suppression and the amount of SRBC in the spleen was observed, suggesting that increased clearance does not explain IgG-mediated suppression. Instead, we found compelling evidence for epitope masking because IgG anti-NP administered with NP-SRBC suppressed the IgG anti-NP, but not the IgG anti-SRBC response. Vice versa, IgG anti-SRBC administered with NP-SRBC, suppressed only the IgG anti-SRBC response. In conclusion, passively transferred IgG suppressed all measured parameters of an antigen-specific antibody/B cell response and an important mechanism of action is likely to be epitope masking.
  •  
7.
  • Bergström, Joakim J. E., et al. (författare)
  • Mice Immunized With IgG Anti-Sheep Red Blood Cells (SRBC) Together With SRBC Have a Suppressed Anti-SRBC Antibody Response but Generate Germinal Centers and Anti-IgG Antibodies in Response to the Passively Administered IgG
  • 2017
  • Ingår i: Frontiers in Immunology. - : Frontiers Media S.A.. - 1664-3224. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Antigen-specific IgG antibodies, passively administered together with large particulate antigens such as erythrocytes, can completely suppress the antigen-specific antibody response. The mechanism behind has been elusive. Herein, we made the surprising observation that mice immunized with IgG anti-sheep red blood cells (SRBC) and SRBC, in spite of a severely suppressed anti-SRBC response, have a strong germinal center (GC) response. This occurred regardless of whether the passively administered IgG was of the same allotype as that of the recipient or not. Six days after immunization, the GC size and the number of GC B cells were higher in mice immunized with SRBC alone than in mice immunized with IgG and SRBC, but at the other time points these parameters were similar. GCs in the IgG-groups had a slight shift toward dark zone B cells 6 days after immunization and toward light zone B cells 10 days after immunization. The proportions of T follicular helper cells (TFH) and T follicular regulatory cells (TFR) were similar in the two groups. Interestingly, mice immunized with allogeneic IgG anti-SRBC together with SRBC mounted a vigorous antibody response against the passively administered suppressive IgG. Thus, although their anti-SRBC response was almost completely suppressed, an antibody response against allogeneic, and probably also syngeneic, IgG developed. This most likely explains the development of GCs in the absence of an anti-SRBC antibody response.
  •  
8.
  • Björnsdottir, Halla, et al. (författare)
  • Phenol-soluble Modulin α Peptide Toxins from aggressive Staphylococcus aureus induce rapid Formation of neutrophil extracellular Traps through a reactive Oxygen species-independent Pathway
  • 2017
  • Ingår i: Frontiers in Immunology. - : Frontiers Media SA. - 1664-3224. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Neutrophils have the ability to capture and kill microbes extracellularly through the formation of neutrophil extracellular traps (NETs). These are DNA and protein structures that neutrophils release extracellularly and are believed to function as a defense mechanism against microbes. The classic NET formation process, triggered by, e.g., bacteria, fungi, or by direct stimulation of protein kinase C through phorbol myristate acetate, is an active process that takes several hours and relies on the production of reactive oxygen species (ROS) that are further modified by myeloperoxidase (MPO). We show here that NET-like structures can also be formed by neutrophils after interaction with phenol-soluble modulin alpha (PSM alpha) that are cytotoxic membrane-disturbing peptides, secreted from community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA). The PSMa-induced NETs contained the typical protein markers and were able to capture microbes. The PSMa-induced NET structures were disintegrated upon prolonged exposure to DNase-positive S. aureus but not on exposure to DNase-negative Candida albicans. Opposed to classic NETosis, PSMa-triggered NET formation occurred very rapidly, independently of ROS or MPO, and was also manifest at 4 degrees C. These data indicate that rapid NETs release may result from cytotoxic membrane disturbance by PSMa peptides, a process that may be of importance for CA-MRSA virulence.
  •  
9.
  • Bondza, Sina, et al. (författare)
  • Real-time Characterization of Antibody Binding to Receptors on Living Immune Cells
  • 2017
  • Ingår i: Frontiers in Immunology. - : Frontiers Media SA. - 1664-3224. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding molecular interactions on immune cells is crucial for drug development to treat cancer and autoimmune diseases. When characterizing molecular interactions, the use of a relevant living model system is important, as processes such as receptor oligomerization and clustering can influence binding patterns. We developed a protocol to enable time-resolved analysis of ligand binding to receptors on living suspension cells. Different suspension cell lines and weakly adhering cells were tethered to Petri dishes with the help of a biomolecular anchor molecule, and antibody binding was analyzed using LigandTracer. The protocol and assay described in this report were used to characterize interactions involving eight cell lines. Experiments were successfully conducted in three different laboratories, demonstrating the robustness of the protocol. For various antibodies, affinities and kinetic rate constants were obtained for binding to CD20 on both Daudi and Ramos B-cells, the T-cell co-receptor CD3 on Jurkat cells, and the Fc gamma receptor CD32 on transfected HEK293 cells, respectively. Analyzing the binding of Rituximab to B-cells resulted in an affinity of 0.7-0.9 nM, which is similar to values reported previously for living B-cells. However, we observed a heterogeneous behavior for Rituximab interacting with B-cells, which to our knowledge has not been described previously. The understanding of complex interactions will be facilitated with the possibility to characterize binding processes in real-time on living immune cells. This provides the chance to broaden the understanding of how binding kinetics relate to biological function.
  •  
10.
  • Borriello, F., et al. (författare)
  • Identification and Characterization of Stimulator of Interferon Genes As a Robust Adjuvant Target for Early Life Immunization
  • 2017
  • Ingår i: Frontiers in Immunology. - : Frontiers Media SA. - 1664-3224. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Immunization is key to preventing infectious diseases, a leading cause of death early in life. However, due to age-specific immunity, vaccines often demonstrate reduced efficacy in newborns and young infants as compared to adults. Here, we combined in vitro and in vivo approaches to identify adjuvant candidates for early life immunization. We employed newborn and adult bone marrow-derived dendritic cells (BMDCs) to perform a screening of pattern recognition receptor agonists and found that the stimulator of interferon genes ligand 2' 3'-cGAMP (hereafter cGAMP) induces a comparable expression of surface maturation markers in newborn and adult BMDCs. Then, we utilized the trivalent recombinant hemagglutinin (rHA) influenza vaccine, Flublok, as a model antigen to investigate the role of cGAMP in adult and early life immunization. cGAMP adjuvantation alone could increase rHA-specific antibody titers in adult but not newborn mice. Remarkably, as compared to alum or cGAMP alone, immunization with cGAMP formulated with alum (Alhydrogel) enhanced newborn rHA-specific IgG2a/ c titers similar to 400-fold, an antibody subclass associated with the development of IFN gamma-driven type 1 immunity in vivo and endowed with higher effector functions, by 42 days of life. Highlighting the amenability for successful vaccine formulation and delivery, we next confirmed that cGAMP adsorbs onto alum in vitro. Accordingly, immunization early in life with (cGAMP(+) alum) promoted IFN. production by CD4(+) T cells and increased the proportions and absolute numbers of CD4(+) CXCR5(+) PD-1(+) T follicular helper and germinal center (GC) GL-7(+) CD138(+) B cells, suggesting an enhancement of the GC reaction. Adjuvantation effects were apparently specific for IgG2a/c isotype switching without effect on antibody affinity maturation, as there was no effect on rHA-specific IgG avidity. Overall, our studies suggest that cGAMP when formulated with alum may represent an effective adjuvantation system to foster humoral and cellular aspects of type 1 immunity for early life immunization.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 62
Typ av publikation
tidskriftsartikel (58)
forskningsöversikt (4)
Typ av innehåll
refereegranskat (62)
Författare/redaktör
Bryceson, YT (2)
Ljunggren, HG (2)
Kere, J (2)
Seppanen, M (2)
Grunewald, J (2)
Bylund, Johan, 1975 (2)
visa fler...
Achour, A (2)
Pejler, Gunnar (2)
Chen, Y. (1)
He, M. (1)
Schmidt, A. (1)
Huber, S. (1)
Sandberg, JK (1)
Moretta, L (1)
Sharma, P. (1)
Janson, Christer (1)
Zetterberg, Henrik, ... (1)
Lakshmikanth, Tadepa ... (1)
Chen, Yang (1)
Mikes, Jaromir (1)
Brodin, Petter (1)
Ahmed, M (1)
Schmidtchen, Artur (1)
Mörgelin, Matthias (1)
Holmgren, A (1)
Wang, P. (1)
Marabita, F (1)
Einarsdottir, E (1)
Hughes, Diarmaid, 19 ... (1)
Andersson, J (1)
Jarvinen, A (1)
Witte, Torsten (1)
Greiff, Lennart (1)
Al-Herz, W (1)
Hallgren, Jenny (1)
Ronnblom, L. (1)
Levander, Fredrik (1)
Zumla, A (1)
Maeurer, M (1)
Sandin, C (1)
Malmstrom, V (1)
Tegner, J (1)
Kvastad, Linda (1)
Urban, Constantin F (1)
Sandalova, T (1)
Achour, Adnane (1)
Brodin, P (1)
Lycke, Jan, 1956 (1)
Padyukov, L (1)
Nordenskjold, M (1)
visa färre...
Lärosäte
Karolinska Institutet (38)
Göteborgs universitet (12)
Uppsala universitet (11)
Stockholms universitet (7)
Lunds universitet (5)
Umeå universitet (4)
visa fler...
Kungliga Tekniska Högskolan (3)
Sveriges Lantbruksuniversitet (2)
Linköpings universitet (1)
visa färre...
Språk
Engelska (62)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (32)
Naturvetenskap (11)
Teknik (1)
Samhällsvetenskap (1)
År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy