SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Abrahamsson Niclas) ;pers:(Eriksson Jan)"

Sökning: WFRF:(Abrahamsson Niclas) > Eriksson Jan

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abrahamsson, Niclas, 1976-, et al. (författare)
  • Gastric bypass reduces symptoms and hormonal responses to hypoglycemia
  • 2016
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 65:9, s. 2667-2675
  • Tidskriftsartikel (refereegranskat)abstract
    • Gastric bypass (GBP) surgery, one of the most common bariatric procedures, induces weight loss and metabolic effects. The mechanisms are not fully understood, but reduced food intake and effects on gastrointestinal hormones are thought to contribute. We recently observed that GBP patients have lowered glucose levels and frequent asymptomatic hypoglycemic episodes. Here, we subjected patients before and after undergoing GBP surgery to hypoglycemia and examined symptoms and hormonal and autonomic nerve responses. Twelve obese patients without diabetes (8 women, mean age 43.1 years [SD 10.8] and BMI 40.6 kg/m(2) [SD 3.1]) were examined before and 23 weeks (range 19-25) after GBP surgery with hyperinsulinemic-hypoglycemic clamp (stepwise to plasma glucose 2.7 mmol/L). The mean change in Edinburgh Hypoglycemia Score during clamp was attenuated from 10.7 (6.4) before surgery to 5.2 (4.9) after surgery. There were also marked postsurgery reductions in levels of glucagon, cortisol, and catecholamine and the sympathetic nerve responses to hypoglycemia. In addition, growth hormone displayed a delayed response but to a higher peak level. Levels of glucagon-like peptide 1 and gastric inhibitory polypeptide rose during hypoglycemia but rose less postsurgery compared with presurgery. Thus, GBP surgery causes a resetting of glucose homeostasis, which reduces symptoms and neurohormonal responses to hypoglycemia. Further studies should address the underlying mechanisms as well as their impact on the overall metabolic effects of GBP surgery.
  •  
2.
  • Abrahamsson, Niclas, 1976- (författare)
  • On the Impact of Bariatric Surgery on Glucose Homeostasis
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Obesity has grown to epidemic proportions, and in lack of efficient life-style and medical treatments, the bariatric surgeries are performed in rising numbers. The most common surgery is the Gastric Bypass (GBP) surgery, with the Biliopancreatic diversion with duodenal switch (DS) as an option for the most extreme cases with a BMI>50 kg/m2.In paper I 20 GBP-patients were examined during the first post-operative year regarding the natriuretic peptide, NT-ProBNP, which is secreted from the cardiac ventricles. Levels of NT-ProBNP quickly increased during the first post-surgery week, and later established itself on a higher level than pre-surgery.In paper II we report of 5 patient-cases after GBP-surgery with severe problems with postprandial hypoglycaemia that were successfully treated with GLP-1-analogs. The effect of treatment could be observed both symptomatically and in some cases using continuous glucose measuring systems (CGMS).In paper III three groups of subjects; 15 post-GBP patients, 15 post-DS, and 15 obese controls were examined for three days using CGMS during everyday life. The post-GBP group had high glucose variability as measured by MAGE and CONGA, whereas the post-DS group had low variability. Both post-operative groups exhibited significant time in hypoglycaemia, about 40 and 80 minutes per day <3.3mmol/l and 20 and 40 minutes < 2.8mmol/l, respectively, longer time for DS-group. Remarkably, only about 20% of these hypoglycaemic episodes were accompanied with symptoms.In Paper IV the hypoglycaemia counter regulatory system was investigated; 12 patients were examined before and after GBP-surgery with a stepped hypoglycaemic hyperinsulinemic clamp. The results show a downregulation of symptoms, counter regulatory hormones (glucagon, cortisol, epinephrine, norepinephrine, growth hormone), incretin hormones (GLP-1 and GIP), and sympathetic nervous response.In conclusion patients post bariatric surgery exhibit a downregulated counter regulatory response to hypoglycaemia, accompanied by frequent asymptomatic hypoglycaemic episodes in everyday life. Patients suffering from severe hypoglycaemic episodes can often be treated successfully with GLP-1-analogues.
  •  
3.
  • Almby, Kristina E., et al. (författare)
  • Effects of Gastric Bypass Surgery on the Brain : Simultaneous Assessment of Glucose Uptake, Blood Flow, Neural Activity, and Cognitive Function During Normo- and Hypoglycemia
  • 2021
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 70:6, s. 1265-1277
  • Tidskriftsartikel (refereegranskat)abstract
    • While Roux-en-Y gastric bypass (RYGB) surgery in obese individuals typically improves glycemic control and prevents diabetes, it also frequently causes asymptomatic hypoglycemia. Previous work showed attenuated counterregulatory responses following RYGB. The underlying mechanisms as well as the clinical consequences are unclear. In this study, 11 subjects without diabetes with severe obesity were investigated pre- and post-RYGB during hyperinsulinemic normo-hypoglycemic clamps. Assessments were made of hormones, cognitive function, cerebral blood flow by arterial spin labeling, brain glucose metabolism by F-18-fluorodeoxyglucose (FDG) positron emission tomography, and activation of brain networks by functional MRI. Post- versus presurgery, we found a general increase of cerebral blood flow but a decrease of total brain FDG uptake during normoglycemia. During hypoglycemia, there was a marked increase in total brain FDG uptake, and this was similar for post- and presurgery, whereas hypothalamic FDG uptake was reduced during hypoglycemia. During hypoglycemia, attenuated responses of counterregulatory hormones and improvements in cognitive function were seen postsurgery. In early hypoglycemia, there was increased activation post- versus presurgery of neural networks in brain regions implicated in glucose regulation, such as the thalamus and hypothalamus. The results suggest adaptive responses of the brain that contribute to lowering of glycemia following RYGB, and the underlying mechanisms should be further elucidated.
  •  
4.
  • Almby, Kristina E., et al. (författare)
  • Effects of GLP-1 on counter-regulatory responses during hypoglycemia after GBP surgery
  • 2019
  • Ingår i: European Journal of Endocrinology. - : Bioscientifica. - 0804-4643 .- 1479-683X. ; 181:2, s. 161-171
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives: The aim of the study was to explore the role of GLP-1 receptor activation on the counter-regulation and symptoms of hypoglycemia in subjects who have undergone gastric bypass surgery (GBP).Design: Experimental hyperinsulinemic–hypoglycemic clamp study.Methods: Twelve post-GBP subjects participated in a randomized cross-over study with two hyperinsulinemic, hypoglycemic clamps (glucose nadir 2.7 mmol/L) performed on separate days with concomitant infusions of the GLP-1 analog exenatide or with saline, respectively. Continuous measurements of metabolites and counter-regulatory hormones as well as assessments of heart rate variability and symptoms of hypoglycemia were performed throughout the clamps.Results: No effect of GLP-1 receptor activation on counter-regulatory hormones (glucagon, catecholamines, cortisol, GH) or glucose infusion rate was seen, but we found indications of a downregulation of the sympathetic relative to the parasympathetic nerve activity, as reflected in heart rate variability. No significant differences in symptom of hypoglycemia were observed.Conclusions/interpretation: Short-term exposure to a GLP-1 receptor agonist does not seem to impact the counter-regulatory hormonal and metabolic responses in post-GBP subjects during hypoglycemic conditions, suggesting that the improvement in symptomatic hypoglycemia post-GBP seen following treatment with GLP-1 receptor agonists may be mediated by mechanism not directly involved in counter-regulation.
  •  
5.
  • Eriksson, Jan, et al. (författare)
  • Altered glucose-dependent secretion of glucagon and ACTH is associated with insulin resistance, assessed by population analysis
  • 2023
  • Ingår i: Endocrine Connections. - : Bioscientifica. - 2049-3614. ; 12:4
  • Tidskriftsartikel (refereegranskat)abstract
    • This study aimed to characterize how the dysregulation of counter-regulatory hormones can contribute to insulin resistance and potentially to diabetes. Therefore, we investigated the association between insulin sensitivity and the glucose- and insulin-dependent secretion of glucagon, adrenocorticotropic hormone (ACTH), and cortisol in non-diabetic individuals using a population model analysis. Data, from hyperinsulinemic-hypoglycemic clamps, were pooled for analysis, including 52 individuals with a wide range of insulin resistance (reflected by glucose infusion rate 20-60 min; GIR(20-60min)). Glucagon secretion was suppressed by glucose and, to a lesser extent, insulin. The GIR(20-60min) and BMI were identified as predictors of the insulin effect on glucagon. At normoglycemia (5 mmol/L), a 90% suppression of glucagon was achieved at insulin concentrations of 16.3 and 43.4 mu U/mL in individuals belonging to the highest and lowest quantiles of insulin sensitivity, respectively. Insulin resistance of glucagon secretion explained the elevated fasting glucagon for individuals with a low GIR(20-60min). ACTH secretion was suppressed by glucose and not affected by insulin. The GIR(20-60min) was superior to other measures as a predictor of glucose-dependent ACTH secretion, with 90% suppression of ACTH secretion by glucose at 3.1 and 3.5 mmol/L for insulin-sensitive and insulin-resistant individuals, respectively. This difference may appear small but shifts the suppression range into normoglycemia for individuals with insulin resistance, thus, leading to earlier and greater ACTH/cortisol response when the glucose falls. Based on modeling of pooled glucose-clamp data, insulin resistance was associated with generally elevated glucagon and a potentiated cortisol-axis response to hypoglycemia, and over time both hormonal pathways may therefore contribute to dysglycemia and possibly type 2 diabetes.
  •  
6.
  • Lundqvist, Martin H., et al. (författare)
  • Altered hormonal and autonomic nerve responses to hypo- and hyperglycaemia are found in overweight and insulin-resistant individuals and may contribute to the development of type 2 diabetes
  • 2021
  • Ingår i: Diabetologia. - : Springer. - 0012-186X .- 1432-0428. ; 64:3, s. 641-655
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis: Results from animal models and some clinical work suggest a role for the central nervous system (CNS) in glucose regulation and type 2 diabetes pathogenesis by modulation of glucoregulatory hormones and the autonomic nervous system (ANS). The aim of this study was to characterise the neuroendocrine response to various glucose concentrations in overweight and insulin-resistant individuals compared with lean individuals.Methods: Overweight/obese (HI, n = 15, BMI ≥27.0 kg/m2) and lean (LO, n = 15, BMI <27.0 kg/m2) individuals without diabetes underwent hyperinsulinaemic euglycaemic–hypoglycaemic clamps and hyperglycaemic clamps on two separate occasions with measurements of hormones, Edinburgh Hypoglycaemic Symptom Scale (ESS) score and heart rate variability (HRV). Statistical methods included groupwise comparisons with Mann–Whitney U tests, multilinear regressions and linear mixed models between neuroendocrine responses and continuous metabolic variables.Results: During hypoglycaemic clamps, there was an elevated cortisol response in HI vs LO (median ΔAUC 12,383 vs 4793 nmol/l × min; p = 0.050) and a significantly elevated adrenocorticotropic hormone (ACTH) response in HI vs LO (median ΔAUC 437.3 vs 162.0 nmol/l × min; p = 0.021). When adjusting for clamp glucose levels, obesity (p = 0.033) and insulin resistance (p = 0.009) were associated with elevated glucagon levels. By contrast, parasympathetic activity was less suppressed in overweight individuals at the last stage of hypoglycaemia compared with euglycaemia (high-frequency power of HRV, p = 0.024). M value was the strongest predictor for the ACTH and PHF responses, independent of BMI and other variables. There was a BMI-independent association between the cortisol response and ESS score response (p = 0.024). During hyperglycaemic clamps, overweight individuals displayed less suppression of glucagon levels (median ΔAUC −63.4% vs −73.0%; p = 0.010) and more suppression of sympathetic relative to parasympathetic activity (low-frequency/high-frequency power, p = 0.011).Conclusions/interpretation: This study supports the hypothesis that altered responses of insulin-antagonistic hormones and the ANS to glucose fluctuations occur in overweight and insulin-resistant individuals, and that these responses are probably partly mediated by the CNS. Their potential role in development of type 2 diabetes needs to be addressed in future research.
  •  
7.
  • Lundqvist, Martin H., et al. (författare)
  • Is the Brain a Key Player in Glucose Regulation and Development of Type 2 Diabetes?
  • 2019
  • Ingår i: Frontiers in Physiology. - : FRONTIERS MEDIA SA. - 1664-042X. ; 10
  • Forskningsöversikt (refereegranskat)abstract
    • Ever since Claude Bernards discovery in the mid 19th-century that a lesion in the floor of the third ventricle in dogs led to altered systemic glucose levels, a role of the CNS in whole-body glucose regulation has been acknowledged. However, this finding was later overshadowed by the isolation of pancreatic hormones in the 20th century. Since then, the understanding of glucose homeostasis and pathology has primarily evolved around peripheral mechanism. Due to scientific advances over these last few decades, however, increasing attention has been given to the possibility of the brain as a key player in glucose regulation and the pathogenesis of metabolic disorders such as type 2 diabetes. Studies of animals have enabled detailed neuroanatomical mapping of CNS structures involved in glucose regulation and key neuronal circuits and intracellular pathways have been identified. Furthermore, the development of neuroimaging techniques has provided methods to measure changes of activity in specific CNS regions upon diverse metabolic challenges in humans. In this narrative review, we discuss the available evidence on the topic. We conclude that there is much evidence in favor of active CNS involvement in glucose homeostasis but the relative importance of central vs. peripheral mechanisms remains to be elucidated. An increased understanding of this field may lead to new CNS-focusing pharmacologic strategies in the treatment of type 2 diabetes.
  •  
8.
  • Lundqvist, Martin (författare)
  • Insulin-antagonistic neurohormonal pathways in the development of insulin resistance and type 2 diabetes
  • 2023
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • According to the current paradigm, the development of type 2 diabetes is driven by insulin resistance and the gradual failure of beta cells to compensate for this by secreting adequate amounts of insulin. Obesity is an important risk factor for type 2 diabetes and is considered to influence disease development primarily by induction of insulin resistance, via mechanisms that have not been fully elucidated. Insulin-antagonistic, counter-regulatory neurohormonal pathways, including glucagon, cortisol (stimulated by the pituitary hormone ACTH), growth hormone and the autonomic nervous system have glucose-raising properties and constitute a physiological defense to hypoglycemia that is coordinated from the brain and brainstem. Glucose variations also trigger responses of several inflammatory mediators, that may also oppose the actions of insulin. The overarching aim of this thesis was to explore the importance of glucose-dependent dysregulation of these counter-regulatory pathways – hormonal, neural and inflammatory – in the development of type 2 diabetes. All selected papers in this thesis are based on data obtained during stepwise hyperinsulinemic-euglycemic-hypoglycemic clamps and hyperglycemic clamps, in which glucose levels are lowered or raised to prespecified target levels. In papers I and II, we found that overweight and insulin resistance was associated with cortisol/ACTH hyperreactivity to hypoglycemia and general hyperglucagonemia, insensitive to glucose-dependent suppression. Furthermore, in paper I, the autonomic nervous system was more rigid to glucose variations in overweight and insulin resistant individuals, with a failure to inhibit parasympathetic activity during hypoglycemia and an attenuated activity of sympathetic relative to parasympathetic activity during hyperglycemia. In paper III, cortisol/ACTH hyperreactivity was present already in individuals with prediabetes, with no further exacerbation in individuals with type 2 diabetes. By contrast, hyperglycemia-insensitive hyperglucagonemia and, in addition, general growth hormone downregulation was found to be more pronounced in individuals with type 2 diabetes. In paper IV, no unfavorably altered reactivity of inflammatory markers was found in obese compared to lean individuals. In conclusion, glucose-dependent dysregulation of several insulin-antagonistic neurohormonal pathways appears to be present at different stages of type 2 diabetes development and may drive disease development via aggravation of insulin resistance. 
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy