SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Adamovic Svetlana) ;pers:(Gudjonsdottir Audur 1959)"

Sökning: WFRF:(Adamovic Svetlana) > Gudjonsdottir Audur 1959

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Adamovic, Svetlana, 1965, et al. (författare)
  • Association study of IL2/IL21 and FcgRIIa: significant association with the IL2/IL21 region in Scandinavian coeliac disease families
  • 2008
  • Ingår i: Genes and immunity. - : Springer Science and Business Media LLC. - 1466-4879 .- 1476-5470. ; 9:4, s. 364-367
  • Tidskriftsartikel (refereegranskat)abstract
    • The first genome-wide association study performed in a UK coeliac disease (CD) case-control cohort revealed association with a linkage disequilibrium block containing the KIAA1109/Tenr/IL2/IL21 genes. Also recently, an association with a non-synonymous polymorphism in Fcitalic gammaRIIa (CD32a) was reported in CD with an unusually strong P-value. We aimed to replicate the reported associations with the single nucleotide polymorphisms rs13119723 A>G and rs6822844 G>T in the KIAA1109/Tenr/IL2/IL21 region and rs1801274 G>A in the Fcitalic gammaRIIa gene in a family sample consisting of 325 Swedish/Norwegian families using the robust transmission disequilibrium test. The family sample used in this study included 100 families with two or more children affected by CD and 225 families with one affected child. We could confirm significant association between the polymorphisms rs13119723 A>G and rs6822844 G>T located in the KIAA1109/Tenr/IL2/IL21 region and CD (P-value 0.001 and 0.002, respectively). However, we found no association with the Fcitalic gammaRIIa rs1801274 G>A polymorphism (P-value=0.3). In conclusion, our results support the KIAA1109/Tenr/IL2/IL21 region as a true CD susceptibility region.
  •  
2.
  • Adamovic, Svetlana, 1965, et al. (författare)
  • Fine mapping study in Scandinavian families suggests association between coeliac disease and haplotypes in chromosome region 5q32.
  • 2008
  • Ingår i: Tissue Antigens. - : Wiley. - 1399-0039 .- 0001-2815. ; 71:1, s. 27-34
  • Tidskriftsartikel (refereegranskat)abstract
    • The previous genome-wide scan in Scandinavian families supported earlier evidence for linkage of a region on chromosome 5 (5q31–33) to coeliac disease. This study deals with further genetic mapping of an 18 cM region, spanning from marker GAh18A (131.87 Mb) to D5S640 (149.96 Mb). Linkage and association analyses were performed in a two-step approach. First, seven microsatellites were added. Strong evidence for linkage was obtained with a Zlr score of 3.96, Pnc = 4 × 10−5 at marker D5S436. The strongest association was with a haplotype consisting of the markers D5S2033 and D5S2490 (Pnc < 0.001). In the second step, we added 17 microsatellites and 69 single nucleotide polymorphisms (SNPs) to the analysis. These markers were located close to or within candidate genes across the region of approximately 7 Mb beneath the linkage peak marked by D5S2017 and D5S812. A substantial increase of the linkage signal with a maximum Zlr score of 4.6 at marker rs1972644 (Pnc = 2 × 10−6) was obtained and several SNPs showed association. Seven SNPs that individually showed the strongest association were genotyped in a second independent family sample set (225 trios). In the trio family sample as well as in the multiplex family sample, the strongest association was found with SNPs within the region flanked by the associated microsatellites D5S2033 and D5S2490 at 5q32.
  •  
3.
  • amundsen, silja, et al. (författare)
  • A comprehensive screen for SNP associations on chromosome region 5q31-33 in Swedish/Norwegian celiac disease families.
  • 2007
  • Ingår i: European Journal of Human genetics. - : Springer Science and Business Media LLC. - 1018-4813 .- 1476-5438. ; 15:9, s. 980-987
  • Tidskriftsartikel (refereegranskat)abstract
    • Celiac disease (CD) is a gluten-induced enteropathy, which results from the interplay between environmental and genetic factors. There is a strong human leukocyte antigen (HLA) association with the disease, and HLA-DQ alleles represent a major genetic risk factor. In addition to HLA-DQ, non-HLA genes appear to be crucial for CD development. Chromosomal region 5q31–33 has demonstrated linkage with CD in several genome-wide studies, including in our Swedish/Norwegian cohort. In a European meta-analysis 5q31–33 was the only region that reached a genome-wide level of significance except for the HLA region. To identify the genetic variant(s) responsible for this linkage signal, we performed a comprehensive single nucleotide polymorphism (SNP) association screen in 97 Swedish/Norwegian multiplex families who demonstrate linkage to the region. We selected tag SNPs from a 16 Mb region representing the 95% confidence interval of the linkage peak. A total of 1404 SNPs were used for the association analysis. We identified several regions with SNPs demonstrating moderate single- or multipoint associations. However, the isolated association signals appeared insufficient to account for the linkage signal seen in our cohort. Collective effects of multiple risk genes within the region, incomplete genetic coverage or effects related to copy number variation are possible explanations for our findings.
  •  
4.
  • Amundsen, Silja Svanström, et al. (författare)
  • Four novel coeliac disease regions replicated in an association study of a Swedish-Norwegian family cohort.
  • 2010
  • Ingår i: Genes and immunity. - : Springer Science and Business Media LLC. - 1476-5470 .- 1466-4879. ; 11:1, s. 79-86
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent genome-wide association studies have identified 1q31 (RGS1), 2q11-12 (IL18RAP), 3p21 (CCR1/CCR3/CCR2), 3q25-26 (IL12A/SCHIP1), 3q28 (LPP), 4q27 (IL2/IL21), 6q25 (TAGAP) and 12q24 (SH2B3) as susceptibility regions for coeliac disease (CD). We have earlier replicated association with the IL2/IL21 region. This study aimed at replicating the remaining regions in a family cohort using the transmission disequilibrium test, which is not prone to population stratification as a source of false-positive results. Nine single nucleotide polymorphisms (SNPs) within these regions were genotyped in 325 Swedish-Norwegian CD families. We found significant associations with the same alleles in the regions 1q31 (rs2816316; P(nc)=0.0060), 3p21 (rs6441961; P(nc)=0.0006), 3q25-26 (rs17810564; P(nc)=0.0316 and rs9811792; P(nc)=0.0434) and 3q28 (rs1464510; P(nc)=0.0037). Borderline, but non-significant, associations were found for rs917997 (IL18RAP), whereas no evidence for association could be obtained for rs13015714 (IL18RAP) or rs1738074 (TAGAP). The lack of replication of the latter SNPs could be because of limited power. rs3184504 (SH2B3) was not analysed because of assay failure. The most significantly associated region, 3p21 (CCR1/CCR3/CCR2), was further analysed by typing of 30 SNPs, with the aim of identifying the causal variant responsible for the initial association. Several SNPs showed association with CD, but none displayed associations stronger than rs6441961, nor did any of them add to the effect initially marked by rs6441961 in a conditional analysis. However, differential effects of rs6441961(*)C carrying haplotypes were indicated, and we thus cannot exclude the possibility that our inability to obtain evidence for multiple independent effects in the CCR1/CCR3/CCR2 gene region was related to a power issue.
  •  
5.
  • Östensson, Malin, 1984, et al. (författare)
  • A Possible Mechanism behind Autoimmune Disorders Discovered By Genome-Wide Linkage and Association Analysis in Celiac Disease
  • 2013
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 8:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Celiac disease is a common autoimmune disorder characterized by an intestinal inflammation triggered by gluten, a storage protein found in wheat, rye and barley. Similar to other autoimmune diseases such as type 1 diabetes, psoriasis and rheumatoid arthritis, celiac disease is the result of an immune response to self-antigens leading to tissue destruction and production of autoantibodies. Common diseases like celiac disease have a complex pattern of inheritance with inputs from both environmental as well as additive and non-additive genetic factors. In the past few years, Genome Wide Association Studies (GWAS) have been successful in finding genetic risk variants behind many common diseases and traits. To complement and add to the previous findings, we performed a GWAS including 206 trios from 97 nuclear Swedish and Norwegian families affected with celiac disease. By stratifying for HLA-DQ, we identified a new genome-wide significant risk locus covering the DUSP10 gene. To further investigate the associations from the GWAS we performed pathway analyses and two-locus interaction analyses. These analyses showed an over-representation of genes involved in type 2 diabetes and identified a set of candidate mechanisms and genes of which some were selected for mRNA expression analysis using small intestinal biopsies from 98 patients. Several genes were expressed differently in the small intestinal mucosa from patients with celiac autoimmunity compared to intestinal mucosa from control patients. From top-scoring regions we identified susceptibility genes in several categories: 1) polarity and epithelial cell functionality; 2) intestinal smooth muscle; 3) growth and energy homeostasis, including proline and glutamine metabolism; and finally 4) innate and adaptive immune system. These genes and pathways, including specific functions of DUSP10, together reveal a new potential biological mechanism that could influence the genesis of celiac disease, and possibly also other chronic disorders with an inflammatory component.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy