SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Agartz I.) ;pers:(Westlye LT)"

Sökning: WFRF:(Agartz I.) > Westlye LT

  • Resultat 1-10 av 60
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Baldwin, H, et al. (författare)
  • Neuroanatomical heterogeneity and homogeneity in individuals at clinical high risk for psychosis
  • 2022
  • Ingår i: Translational psychiatry. - : Springer Science and Business Media LLC. - 2158-3188. ; 12:1, s. 297-
  • Tidskriftsartikel (refereegranskat)abstract
    • Individuals at Clinical High Risk for Psychosis (CHR-P) demonstrate heterogeneity in clinical profiles and outcome features. However, the extent of neuroanatomical heterogeneity in the CHR-P state is largely undetermined. We aimed to quantify the neuroanatomical heterogeneity in structural magnetic resonance imaging measures of cortical surface area (SA), cortical thickness (CT), subcortical volume (SV), and intracranial volume (ICV) in CHR-P individuals compared with healthy controls (HC), and in relation to subsequent transition to a first episode of psychosis. The ENIGMA CHR-P consortium applied a harmonised analysis to neuroimaging data across 29 international sites, including 1579 CHR-P individuals and 1243 HC, offering the largest pooled CHR-P neuroimaging dataset to date. Regional heterogeneity was indexed with the Variability Ratio (VR) and Coefficient of Variation (CV) ratio applied at the group level. Personalised estimates of heterogeneity of SA, CT and SV brain profiles were indexed with the novel Person-Based Similarity Index (PBSI), with two complementary applications. First, to assess the extent of within-diagnosis similarity or divergence of neuroanatomical profiles between individuals. Second, using a normative modelling approach, to assess the ‘normativeness’ of neuroanatomical profiles in individuals at CHR-P. CHR-P individuals demonstrated no greater regional heterogeneity after applying FDR corrections. However, PBSI scores indicated significantly greater neuroanatomical divergence in global SA, CT and SV profiles in CHR-P individuals compared with HC. Normative PBSI analysis identified 11 CHR-P individuals (0.70%) with marked deviation (>1.5 SD) in SA, 118 (7.47%) in CT and 161 (10.20%) in SV. Psychosis transition was not significantly associated with any measure of heterogeneity. Overall, our examination of neuroanatomical heterogeneity within the CHR-P state indicated greater divergence in neuroanatomical profiles at an individual level, irrespective of psychosis conversion. Further large-scale investigations are required of those who demonstrate marked deviation.
  •  
6.
  • Brandt, Christine Lycke, et al. (författare)
  • Cognitive effort and schizophrenia modulate large-scale functional brain connectivity
  • 2015
  • Ingår i: Schizophrenia Bulletin. - 0586-7614 .- 1745-1701. ; 41:6, s. 1360-1369
  • Tidskriftsartikel (refereegranskat)abstract
    • Schizophrenia (SZ) is characterized by cognitive dysfunction and disorganized thought, in addition to hallucinations and delusions, and is regarded a disorder of brain connectivity. Recent efforts have been made to characterize the underlying brain network organization and interactions. However, to which degree connectivity alterations in SZ vary across different levels of cognitive effort is unknown. Utilizing independent component analysis (ICA) and methods for delineating functional connectivity measures from functional magnetic resonance imaging (fMRI) data, we investigated the effects of cognitive effort, SZ and their interactions on between-network functional connectivity during 2 levels of cognitive load in a large and well-characterized sample of SZ patients (n = 99) and healthy individuals (n = 143). Cognitive load influenced a majority of the functional connections, including but not limited to fronto-parietal and default-mode networks, reflecting both decreases and increases in between-network synchronization. Reduced connectivity in SZ was identified in 2 large-scale functional connections across load conditions, with a particular involvement of an insular network. The results document an important role of interactions between insular, default-mode, and visual networks in SZ pathophysiology. The interplay between brain networks was robustly modulated by cognitive effort, but the reduced functional connectivity in SZ, primarily related to an insular network, was independent of cognitive load, indicating a relatively general brain network-level dysfunction.
  •  
7.
  • Elvsashagen, T, et al. (författare)
  • The genetic architecture of human brainstem structures and their involvement in common brain disorders
  • 2020
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11:1, s. 4016-
  • Tidskriftsartikel (refereegranskat)abstract
    • Brainstem regions support vital bodily functions, yet their genetic architectures and involvement in common brain disorders remain understudied. Here, using imaging-genetics data from a discovery sample of 27,034 individuals, we identify 45 brainstem-associated genetic loci, including the first linked to midbrain, pons, and medulla oblongata volumes, and map them to 305 genes. In a replication sample of 7432 participants most of the loci show the same effect direction and are significant at a nominal threshold. We detect genetic overlap between brainstem volumes and eight psychiatric and neurological disorders. In additional clinical data from 5062 individuals with common brain disorders and 11,257 healthy controls, we observe differential volume alterations in schizophrenia, bipolar disorder, multiple sclerosis, mild cognitive impairment, dementia, and Parkinson’s disease, supporting the relevance of brainstem regions and their genetic architectures in common brain disorders.
  •  
8.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 60

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy