SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Agata S) ;lar1:(kth)"

Sökning: WFRF:(Agata S) > Kungliga Tekniska Högskolan

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gudmundsdottir, Valborg, et al. (författare)
  • Whole blood co-expression modules associate with metabolic traits and type 2 diabetes : an IMI-DIRECT study
  • 2020
  • Ingår i: Genome Medicine. - : BioMed Central. - 1756-994X. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The rising prevalence of type 2 diabetes (T2D) poses a major global challenge. It remains unresolved to what extent transcriptomic signatures of metabolic dysregulation and T2D can be observed in easily accessible tissues such as blood. Additionally, large-scale human studies are required to further our understanding of the putative inflammatory component of insulin resistance and T2D. Here we used transcriptomics data from individuals with (n = 789) and without (n = 2127) T2D from the IMI-DIRECT cohorts to describe the co-expression structure of whole blood that mainly reflects processes and cell types of the immune system, and how it relates to metabolically relevant clinical traits and T2D.Methods: Clusters of co-expressed genes were identified in the non-diabetic IMI-DIRECT cohort and evaluated with regard to stability, as well as preservation and rewiring in the cohort of individuals with T2D. We performed functional and immune cell signature enrichment analyses, and a genome-wide association study to describe the genetic regulation of the modules. Phenotypic and trans-omics associations of the transcriptomic modules were investigated across both IMI-DIRECT cohorts.Results: We identified 55 whole blood co-expression modules, some of which clustered in larger super-modules. We identified a large number of associations between these transcriptomic modules and measures of insulin action and glucose tolerance. Some of the metabolically linked modules reflect neutrophil-lymphocyte ratio in blood while others are independent of white blood cell estimates, including a module of genes encoding neutrophil granule proteins with antibacterial properties for which the strongest associations with clinical traits and T2D status were observed. Through the integration of genetic and multi-omics data, we provide a holistic view of the regulation and molecular context of whole blood transcriptomic modules. We furthermore identified an overlap between genetic signals for T2D and co-expression modules involved in type II interferon signaling.Conclusions: Our results offer a large-scale map of whole blood transcriptomic modules in the context of metabolic disease and point to novel biological candidates for future studies related to T2D.
  •  
2.
  • Marcotuli, Ilaria, et al. (författare)
  • Is the CslF6 gene involved in the accumulation of (1,3;1,4)-β-D-glucan in wheats, their wild relatives and their hybrids?
  • 2024
  • Ingår i: Food Chemistry: Molecular Sciences. - : Elsevier. - 2666-5662.
  • Tidskriftsartikel (refereegranskat)abstract
    • Mixed linkage (1,3;1,4)-β-d-glucan (MLG) is a well-recognized bioactive carbohydrate and dietary fibre with expanding applications in food industry. The MLG are small components of the cell wall of vegetative tissues of cereals synthetized by members of the Cellulose Synthase-Like genes (Csl). Within the family, the CslF6 has been the major contributor in wheat. It is of significant health and economic benefits to enhance MLG content in wheat, a staple grain with naturally low MLG levels. This study investigated the role of CslF6 gene in MLG synthesis and analysed total MLG contents, cell wall monosaccharide, glycosidic linkage composition, and profile of major comprising oligosaccharides of MLG in various wheat genotypes, their wild relatives (Aegilops caudata and Dasypyrum villosum), and hybrids between them. We observed a relationship between CslF6 gene expression and MLG accumulation across the different wheat lines. While Aegilops caudata and Dasypyrum villosum exhibited higher MLG content than other genotypes, hybrid breeding led to an increase in MLG content by 24.4% in durum wheat and 43.3% in T. aestivum. Variations in the ratios of major oligosaccharides released from MLG by lichenase treatment and in the compositions of cell wall monosaccharides and glycosidic linkages were also found. This study demonstrates that HPAEC-PAD and GC–MS-based glycomics are invaluable tools to assist breeders in selecting high MLG lines.
  •  
3.
  • Marcotuli, Ilaria, et al. (författare)
  • Non-Starch Polysaccharides in Durum Wheat : A Review
  • 2020
  • Ingår i: International Journal of Molecular Sciences. - : MDPI AG. - 1661-6596 .- 1422-0067. ; 21:8, s. 2933-
  • Tidskriftsartikel (refereegranskat)abstract
    • Durum wheat is one of most important cereal crops that serves as a staple dietary component for humans and domestic animals. It provides antioxidants, proteins, minerals and dietary fibre, which have beneficial properties for humans, especially as related to the health of gut microbiota. Dietary fibre is defined as carbohydrate polymers that are non-digestible in the small intestine. However, this dietary component can be digested by microorganisms in the large intestine and imparts physiological benefits at daily intake levels of 30–35 g. Dietary fibre in cereal grains largely comprises cell wall polymers and includes insoluble (cellulose, part of the hemicellulose component and lignin) and soluble (arabinoxylans and (1,3;1,4)-β-glucans) fibre. More specifically, certain components provide immunomodulatory and cholesterol lowering activity, faecal bulking effects, enhanced absorption of certain minerals, prebiotic effects and, through these effects, reduce the risk of type II diabetes, cardiovascular disease and colorectal cancer. Thus, dietary fibre is attracting increasing interest from cereal processors, producers and consumers. Compared with other components of the durum wheat grain, fibre components have not been studied extensively. Here, we have summarised the current status of knowledge on the genetic control of arabinoxylan and (1,3;1,4)-β-glucan synthesis and accumulation in durum wheat grain. Indeed, the recent results obtained in durum wheat open the way for the improvement of these important cereal quality parameters.
  •  
4.
  • Marcotuli, Ilaria, et al. (författare)
  • Structural Variation and Content of Arabinoxylans in Endosperm and Bran of Durum Wheat (Triticum turgidum L.)
  • 2016
  • Ingår i: Journal of Agricultural and Food Chemistry. - : American Chemical Society (ACS). - 0021-8561 .- 1520-5118. ; 64:14, s. 2883-2892
  • Tidskriftsartikel (refereegranskat)abstract
    • Arabinoxylans are one group of dietary fiber components in cereal grains, and specific health benefits have been linked with their molecular fine structures and hence with physicochemical properties such as solubility in aqueous media. To characterize the fiber quality for functional foods, starchy endosperm and bran fractions from 11 durum wheat lines were analyzed for total and water-soluble arabinoxylans, (1,3;1,4)-beta-glucan, and bound ferulic acid. The arabinoxylan contents ranged from 11 to 16.4% (w/w) in bran and from 1.5 to 1.8% in the starchy endosperm. Of the starchy endosperm arabinoxylans, 37% was soluble in water. No correlation was found between arabinoxylan content and bound ferulic acid in bran, although a relatively high level of this antioxidant was found in endosperm (38.3 mu g/g endosperm flour). Enzymatic fingerprinting was performed to define the major fine structural features of arabinoxylans from both regions of the grain. Five major oligosaccharides released by xylanase hydrolysis were identified and characterized in the 11 durum lines. In addition, DP5, DP6, and DP7 oligosaccharides containing five, six, and seven pentosyl residues, respectively, were purified.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy