SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ahlqvist Emma) ;pers:(Hansen Torben)"

Sökning: WFRF:(Ahlqvist Emma) > Hansen Torben

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ahluwalia, Tarunveer S., et al. (författare)
  • A novel rare CUBN variant and three additional genes identified in Europeans with and without diabetes : results from an exome-wide association study of albuminuria
  • 2019
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; 62:2, s. 292-305
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis: Identifying rare coding variants associated with albuminuria may open new avenues for preventing chronic kidney disease and end-stage renal disease, which are highly prevalent in individuals with diabetes. Efforts to identify genetic susceptibility variants for albuminuria have so far been limited, with the majority of studies focusing on common variants. Methods: We performed an exome-wide association study to identify coding variants in a two-stage (discovery and replication) approach. Data from 33,985 individuals of European ancestry (15,872 with and 18,113 without diabetes) and 2605 Greenlanders were included. Results: We identified a rare (minor allele frequency [MAF]: 0.8%) missense (A1690V) variant in CUBN (rs141640975, β = 0.27, p = 1.3 × 10−11) associated with albuminuria as a continuous measure in the combined European meta-analysis. The presence of each rare allele of the variant was associated with a 6.4% increase in albuminuria. The rare CUBN variant had an effect that was three times stronger in individuals with type 2 diabetes compared with those without (pinteraction = 7.0 × 10−4, β with diabetes = 0.69, β without diabetes = 0.20) in the discovery meta-analysis. Gene-aggregate tests based on rare and common variants identified three additional genes associated with albuminuria (HES1, CDC73 and GRM5) after multiple testing correction (pBonferroni < 2.7 × 10−6). Conclusions/interpretation: The current study identifies a rare coding variant in the CUBN locus and other potential genes associated with albuminuria in individuals with and without diabetes. These genes have been implicated in renal and cardiovascular dysfunction. The findings provide new insights into the genetic architecture of albuminuria and highlight target genes and pathways for the prevention of diabetes-related kidney disease.
  •  
2.
  • Christensen, Diana Hedevang, et al. (författare)
  • Type 2 diabetes classification : a data-driven cluster study of the Danish Centre for Strategic Research in Type 2 Diabetes (DD2) cohort
  • 2022
  • Ingår i: BMJ Open Diabetes Research and Care. - : BMJ. - 2052-4897. ; 10:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction A Swedish data-driven cluster study identified four distinct type 2 diabetes (T2D) clusters, based on age at diagnosis, body mass index (BMI), hemoglobin A1c (HbA1c) level, and homeostatic model assessment 2 (HOMA2) estimates of insulin resistance and beta-cell function. A Danish study proposed three T2D phenotypes (insulinopenic, hyperinsulinemic, and classical) based on HOMA2 measures only. We examined these two new T2D classifications using the Danish Centre for Strategic Research in Type 2 Diabetes cohort. Research design and methods In 3529 individuals, we first performed a k-means cluster analysis with a forced k-value of four to replicate the Swedish clusters: severe insulin deficient (SIDD), severe insulin resistant (SIRD), mild age-related (MARD), and mild obesity-related (MOD) diabetes. Next, we did an analysis open to alternative k-values (ie, data determined the optimal number of clusters). Finally, we compared the data-driven clusters with the three Danish phenotypes. Results Compared with the Swedish findings, the replicated Danish SIDD cluster included patients with lower mean HbA1c (86 mmol/mol vs 101 mmol/mol), and the Danish MOD cluster patients were less obese (mean BMI 32 kg/m 2 vs 36 kg/m 2). Our data-driven alternative k-value analysis suggested the optimal number of T2D clusters in our data to be three, rather than four. When comparing the four replicated Swedish clusters with the three proposed Danish phenotypes, 81%, 79%, and 69% of the SIDD, MOD, and MARD patients, respectively, fitted the classical T2D phenotype, whereas 70% of SIRD patients fitted the hyperinsulinemic phenotype. Among the three alternative data-driven clusters, 60% of patients in the most insulin-resistant cluster constituted 76% of patients with a hyperinsulinemic phenotype. Conclusion Different HOMA2-based approaches did not classify patients with T2D in a consistent manner. The T2D classes characterized by high insulin resistance/hyperinsulinemia appeared most distinct.
  •  
3.
  • Mahajan, Anubha, et al. (författare)
  • Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes
  • 2018
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 50:4, s. 559-571
  • Tidskriftsartikel (refereegranskat)abstract
    • We aggregated coding variant data for 81,412 type 2 diabetes cases and 370,832 controls of diverse ancestry, identifying 40 coding variant association signals (P < 2.2 × 10−7); of these, 16 map outside known risk-associated loci. We make two important observations. First, only five of these signals are driven by low-frequency variants: even for these, effect sizes are modest (odds ratio ≤1.29). Second, when we used large-scale genome-wide association data to fine-map the associated variants in their regional context, accounting for the global enrichment of complex trait associations in coding sequence, compelling evidence for coding variant causality was obtained for only 16 signals. At 13 others, the associated coding variants clearly represent ‘false leads’ with potential to generate erroneous mechanistic inference. Coding variant associations offer a direct route to biological insight for complex diseases and identification of validated therapeutic targets; however, appropriate mechanistic inference requires careful specification of their causal contribution to disease predisposition.
  •  
4.
  • Middeldorp, Christel M., et al. (författare)
  • The Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia : design, results and future prospects
  • 2019
  • Ingår i: European Journal of Epidemiology. - : Springer Science and Business Media LLC. - 0393-2990 .- 1573-7284. ; 34:3, s. 279-300
  • Tidskriftsartikel (refereegranskat)abstract
    • The impact of many unfavorable childhood traits or diseases, such as low birth weight and mental disorders, is not limited to childhood and adolescence, as they are also associated with poor outcomes in adulthood, such as cardiovascular disease. Insight into the genetic etiology of childhood and adolescent traits and disorders may therefore provide new perspectives, not only on how to improve wellbeing during childhood, but also how to prevent later adverse outcomes. To achieve the sample sizes required for genetic research, the Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia were established. The majority of the participating cohorts are longitudinal population-based samples, but other cohorts with data on early childhood phenotypes are also involved. Cohorts often have a broad focus and collect(ed) data on various somatic and psychiatric traits as well as environmental factors. Genetic variants have been successfully identified for multiple traits, for example, birth weight, atopic dermatitis, childhood BMI, allergic sensitization, and pubertal growth. Furthermore, the results have shown that genetic factors also partly underlie the association with adult traits. As sample sizes are still increasing, it is expected that future analyses will identify additional variants. This, in combination with the development of innovative statistical methods, will provide detailed insight on the mechanisms underlying the transition from childhood to adult disorders. Both consortia welcome new collaborations. Policies and contact details are available from the corresponding authors of this manuscript and/or the consortium websites.
  •  
5.
  • Williamson, Alice, et al. (författare)
  • Genome-wide association study and functional characterization identifies candidate genes for insulin-stimulated glucose uptake
  • 2023
  • Ingår i: Nature Genetics. - : Springer Nature. - 1061-4036 .- 1546-1718. ; 55:6, s. 973-983
  • Tidskriftsartikel (refereegranskat)abstract
    • Distinct tissue-specific mechanisms mediate insulin action in fasting and postprandial states. Previous genetic studies have largely focused on insulin resistance in the fasting state, where hepatic insulin action dominates. Here we studied genetic variants influencing insulin levels measured 2 h after a glucose challenge in >55,000 participants from three ancestry groups. We identified ten new loci (P < 5 × 10-8) not previously associated with postchallenge insulin resistance, eight of which were shown to share their genetic architecture with type 2 diabetes in colocalization analyses. We investigated candidate genes at a subset of associated loci in cultured cells and identified nine candidate genes newly implicated in the expression or trafficking of GLUT4, the key glucose transporter in postprandial glucose uptake in muscle and fat. By focusing on postprandial insulin resistance, we highlighted the mechanisms of action at type 2 diabetes loci that are not adequately captured by studies of fasting glycemic traits.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5
Typ av publikation
tidskriftsartikel (5)
Typ av innehåll
refereegranskat (5)
Författare/redaktör
Ahlqvist, Emma (4)
Linneberg, Allan (4)
Grarup, Niels (4)
Groop, Leif (3)
Almgren, Peter (3)
visa fler...
McCarthy, Mark I (3)
Brandslund, Ivan (3)
Pedersen, Oluf (3)
Mohlke, Karen L (3)
Frayling, Timothy M (3)
Lindgren, Cecilia M. (3)
Morris, Andrew P. (3)
Tuomi, Tiinamaija (2)
Li, Jin (2)
Lind, Lars (2)
Melander, Olle (2)
Wareham, Nicholas J. (2)
Laakso, Markku (2)
Ahluwalia, Tarunveer ... (2)
Bork-Jensen, Jette (2)
Orho-Melander, Marju (2)
Langenberg, Claudia (2)
Boehnke, Michael (2)
Tuomilehto, Jaakko (2)
Rotter, Jerome I. (2)
Liu, Jun (2)
Peters, Annette (2)
Yaghootkar, Hanieh (2)
Barroso, Ines (2)
Hattersley, Andrew T (2)
Mahajan, Anubha (2)
Gustafsson, Stefan (2)
Kovacs, Peter (2)
Uitterlinden, André ... (2)
Zeggini, Eleftheria (2)
Dupuis, Josée (2)
Chen, Yii-Der Ida (2)
Meigs, James B. (2)
Witte, Daniel R (2)
Ntalla, Ioanna (2)
Hivert, Marie-France (2)
Lakka, Timo A (2)
Collins, Francis S. (2)
Grallert, Harald (2)
Stumvoll, Michael (2)
Rauramaa, Rainer (2)
Florez, Jose C. (2)
Liu, Ching-Ti (2)
Taylor, Kent D. (2)
visa färre...
Lärosäte
Lunds universitet (5)
Uppsala universitet (2)
Göteborgs universitet (1)
Umeå universitet (1)
Örebro universitet (1)
Mittuniversitetet (1)
visa fler...
Karolinska Institutet (1)
visa färre...
Språk
Engelska (5)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (5)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy