SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ahmed M) ;lar1:(hj)"

Sökning: WFRF:(Ahmed M) > Jönköping University

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fitzmauric, C., et al. (författare)
  • Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived with Disability, and Disability-Adjusted Life-Years for 29 Cancer Groups, 1990 to 2017 : A Systematic Analysis for the Global Burden of Disease Study
  • 2019
  • Ingår i: JAMA Oncology. - : American Medical Association. - 2374-2437 .- 2374-2445. ; 5:12, s. 1749-1768
  • Tidskriftsartikel (refereegranskat)abstract
    • Importance: Cancer and other noncommunicable diseases (NCDs) are now widely recognized as a threat to global development. The latest United Nations high-level meeting on NCDs reaffirmed this observation and also highlighted the slow progress in meeting the 2011 Political Declaration on the Prevention and Control of Noncommunicable Diseases and the third Sustainable Development Goal. Lack of situational analyses, priority setting, and budgeting have been identified as major obstacles in achieving these goals. All of these have in common that they require information on the local cancer epidemiology. The Global Burden of Disease (GBD) study is uniquely poised to provide these crucial data.Objective: To describe cancer burden for 29 cancer groups in 195 countries from 1990 through 2017 to provide data needed for cancer control planning.Evidence Review: We used the GBD study estimation methods to describe cancer incidence, mortality, years lived with disability, years of life lost, and disability-adjusted life-years (DALYs). Results are presented at the national level as well as by Socio-demographic Index (SDI), a composite indicator of income, educational attainment, and total fertility rate. We also analyzed the influence of the epidemiological vs the demographic transition on cancer incidence.Findings: In 2017, there were 24.5 million incident cancer cases worldwide (16.8 million without nonmelanoma skin cancer [NMSC]) and 9.6 million cancer deaths. The majority of cancer DALYs came from years of life lost (97%), and only 3% came from years lived with disability. The odds of developing cancer were the lowest in the low SDI quintile (1 in 7) and the highest in the high SDI quintile (1 in 2) for both sexes. In 2017, the most common incident cancers in men were NMSC (4.3 million incident cases); tracheal, bronchus, and lung (TBL) cancer (1.5 million incident cases); and prostate cancer (1.3 million incident cases). The most common causes of cancer deaths and DALYs for men were TBL cancer (1.3 million deaths and 28.4 million DALYs), liver cancer (572000 deaths and 15.2 million DALYs), and stomach cancer (542000 deaths and 12.2 million DALYs). For women in 2017, the most common incident cancers were NMSC (3.3 million incident cases), breast cancer (1.9 million incident cases), and colorectal cancer (819000 incident cases). The leading causes of cancer deaths and DALYs for women were breast cancer (601000 deaths and 17.4 million DALYs), TBL cancer (596000 deaths and 12.6 million DALYs), and colorectal cancer (414000 deaths and 8.3 million DALYs).Conclusions and Relevance: The national epidemiological profiles of cancer burden in the GBD study show large heterogeneities, which are a reflection of different exposures to risk factors, economic settings, lifestyles, and access to care and screening. The GBD study can be used by policy makers and other stakeholders to develop and improve national and local cancer control in order to achieve the global targets and improve equity in cancer care. 
  •  
2.
  • Sbarra, AN, et al. (författare)
  • Mapping routine measles vaccination in low- and middle-income countries
  • 2021
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 589:7842, s. 415-
  • Tidskriftsartikel (refereegranskat)abstract
    • The safe, highly effective measles vaccine has been recommended globally since 1974, yet in 2017 there were more than 17 million cases of measles and 83,400 deaths in children under 5 years old, and more than 99% of both occurred in low- and middle-income countries (LMICs)1–4. Globally comparable, annual, local estimates of routine first-dose measles-containing vaccine (MCV1) coverage are critical for understanding geographically precise immunity patterns, progress towards the targets of the Global Vaccine Action Plan (GVAP), and high-risk areas amid disruptions to vaccination programmes caused by coronavirus disease 2019 (COVID-19)5–8. Here we generated annual estimates of routine childhood MCV1 coverage at 5 × 5-km2pixel and second administrative levels from 2000 to 2019 in 101 LMICs, quantified geographical inequality and assessed vaccination status by geographical remoteness. After widespread MCV1 gains from 2000 to 2010, coverage regressed in more than half of the districts between 2010 and 2019, leaving many LMICs far from the GVAP goal of 80% coverage in all districts by 2019. MCV1 coverage was lower in rural than in urban locations, although a larger proportion of unvaccinated children overall lived in urban locations; strategies to provide essential vaccination services should address both geographical contexts. These results provide a tool for decision-makers to strengthen routine MCV1 immunization programmes and provide equitable disease protection for all children.
  •  
3.
  • Irum, S., et al. (författare)
  • Cutaneous Leishmaniasis (CL) : A Cross-Sectional Community Based Survey on Knowledge, Attitude and Practices in a Highly Endemic Area of Waziristan (KPK Province), Pakistan
  • 2021
  • Ingår i: Acta Tropica. - : Elsevier. - 0001-706X .- 1873-6254. ; 213
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent outbreaks of Cutaneous Leishmaniasis (CL) in Waziristan make the disease a public health concern in Khyber Pakhtunkhwa (KPK) province, Pakistan. The awareness and behavior of local community towards the disease is an important factor towards effective control and management of CL in endemic areas of Pakistan. A cross-sectional community based survey was piloted in new emerging district of North Waziristan Agency (KPK province), Pakistan from August 2019- February 2020. The study aimed to examine the Knowledge, Attitude and Practices (KAP) of the local community members regarding CL. The results revealed that majority of the participants were male. Only 48.2% participants have knowledge about CL and the respondents had a moderate knowledge of CL vector and the disease. Few of the respondents were aware that CL is caused by sand flies, their breeding place, biting time, transmission of CL and control measures. Skin infection and sand-flies were the main disease symptoms and disease vector were known to some of the respondents. Most of the respondents showed positive attitude towards disease seriousness and believed that the disease could be cured and can be treated through modern medicines. Admission to hospitals, cleanliness and use of bed nets were the treatment measures for the disease in suspected patients, whereas some believed that the use of bed nets could be helpful in preventing the leishmaniasis. Moderate knowledge of the CL and its transmission in the study area emphasize the need to initiate health education and awareness campaigns to reduce the disease risk and burden in this highly endemic area in near future.
  •  
4.
  • Ahmed, Waqas, et al. (författare)
  • Defects impact on pv system ghg mitigation potential and climate change
  • 2021
  • Ingår i: Sustainability. - : MDPI. - 2071-1050. ; 13:14
  • Tidskriftsartikel (refereegranskat)abstract
    • Solar photovoltaic (PV) systems are widely used to mitigate greenhouse gases (GHG), due to their green renewable nature. However, environmental factors such as bird drops, shade, pollution, etc., accommodation on PV panels surface reduce photons transmission to PV cells, which results in lower energy yield and GHG mitigation potential of PV system. In this study, the PV system’s energy and GHG mitigation potential loss is investigated under environmental stresses. Defects/hotspots caused by the environment on PV panel surface have unknown occurrence frequency, time duration, and intensity and are highly variable from location to location. Therefore, different concentrations of defects are induced in a healthy 12 kWp PV system. Healthy PV system has the potential to avoid the burning of 3427.65 L of gasoline by 16,157.9 kWh green energy production per annum. However, in 1% and 20% defective systems, green energy potential reduces to 15,974.3 and 12,485.6 kWh per annum, respectively. It is equivalent to lesser evasion burning of 3388.70, and 2648.64 L of gasoline, respectively. A timely solution to defective panels can prevent losses in the PV system to ensure optimal performance.
  •  
5.
  • Ahmed, Waqas, et al. (författare)
  • Impact of PV system orientation angle accuracy on greenhouse gases mitigation
  • 2021
  • Ingår i: Case Studies in Thermal Engineering. - : Elsevier. - 2214-157X. ; 23
  • Tidskriftsartikel (refereegranskat)abstract
    • Sun, a free source of energy, has moved the world to consider photovoltaic (PV) system as green renewable energy since fossil fuel power plant accounts for a significant share of greenhouse gas (GHG) emissions across the globe. The output of the PV system is limited to many factors; however, the acute accuracy of orientation (tilt and azimuth) angles exposes the PV surfaces to high doses of solar radiations. Which increases the PV system output; in turn GHG mitigation potential. This paper draws a relationship between accuracy of orientation angles impact on PV system's GHG mitigation potential. For reference, the accuracy of orientation angles in Pakistan's Capital increases the annual average daily solar radiations level from 4.02 (horizontal surface) to 4.39 (-33.6 tilt and 180 azimuth) kWh/m2/d. Accuracy of orientation angles on multiple end energy users (equivalent to 1 MW) PV system has potential to avoid additional 65.1 and 22.6 tonnes of CO2 equivalent and production of 158987.13 and 55,120.1 kW h compared with a same size PV system with horizontal surface and 33.6 tilt angle (equivalent to location's latitude), respectively. PV system orientation angles accuracy has the potential to avoid tonnes of GHG emissions without any investment, operation and maintenance costs.
  •  
6.
  • Ahmed, Waqas, et al. (författare)
  • Impact of pv system tracking on energy production and climate change
  • 2021
  • Ingår i: Energies. - : MDPI. - 1996-1073. ; 14:17
  • Tidskriftsartikel (refereegranskat)abstract
    • Green energy by PV systems reduces the dependence on fossil fuel‐based power plants. Maximizing green energy to meet the demand reduces the burden on conventional power plants, hence lesser burning and greenhouse gases (GHG) emissions. For this purpose, this study draws a relationship between tracking schemes of the PV systems to GHG mitigation potential. The best fit location for detailed analyses is selected among the 15 most populous cities of Australia. The solar radiation potential is increased to 7.78 kWh/m2/d through dual axes tracking compared to 7.54, 6.82, 5.94, 5.73 kWh/m2/d through the one axis, azimuth based, fixed‐tilted, and fixed‐horizontal surface schemes, respectively. Through the dual axes tracking scheme, a 1MW PV system per annum energy output avoids the burning of 796,065.3 L of gasoline, 4308.7 barrels of crude oil which is equal to the mitigation of 1852.7 tCo2 equivalent GHGs. Concisely, the PV system, through its green energy out-put, can avoid the release of greenhouse gases from fossil‐fuel plants to tackle climate change more effectively. 
  •  
7.
  • Ahmed, Waqas, et al. (författare)
  • Techno-economic analysis for the role of single end energy user in mitigating GHG emission
  • 2021
  • Ingår i: Energy, Sustainability and Society. - : BioMed Central (BMC). - 2192-0567. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Households, as end energy users, consume grid electricity to meet their energy demands. However, grids across the globe for energy production are majorly based on fossil fuel technology and make the highest contributions to global warming and climate change due to greenhouse gases (GHG) emissions. This generic study aims to investigate the minute role of a single-end energy consumer in GHG mitigation by switching to a rooftop PV system to meet his energy demands and trading surplus energy to the grid through its techno-economic analysis.Method: For the study impact, NASA Meteorological Data are used to select an ideal single energy user equipped with a 10-kW PV system based on annual average daily solar radiation and ambient temperature through MATLAB/Simulink, for 11 populous cities in Pakistan. Helioscope software is used to select tilt and azimuthal angles to maximize the solar radiation intercept. Afterward, RETScreen software is used for cost, financial and GHG analysis.Result and conclusion: A single end energy user equipped with a 10-kW PV system switched to a green energy source from a fossil fuel-based grid has the potential to avoid the burning of 3570.6 L of gasoline by producing 16,832 kWh of green energy per annum, while financially recovering the 10-kW PV system’s 7337$ grid-tied investment in 5 years (equity) and in 9 years (equity) in a 9077$ stand-alone system over its 25-year life. This approach provides relief to end energy users from high priced grid electricity through environmental friendliness by mitigating 8.3 tons of CO2 equivalent emissions per annum from energy production, while providing relief to the main grid by grid stabilization through peak shaving, in the broad sense.
  •  
8.
  • Ahmed, Waqas, et al. (författare)
  • The role of single end-users and producers on ghg mitigation in Pakistan—A case study
  • 2020
  • Ingår i: Sustainability. - : MDPI. - 2071-1050. ; 12:20, s. 1-12
  • Tidskriftsartikel (refereegranskat)abstract
    • End energy user is dependent on fossil fuel-based main-grid and contributes toward greenhouse gasses (GHG) emissions. Changing its energy source will change the dynamics of the power plant, contribution towards GHG production. This case study aims to highlight the minute but positive role of a single end energy user, invisible to the main grid in GHG mitigations through photovoltaic energy source, selected among Pakistan’s top 10 most populous cities as per census 2017. Quetta is a selected city in Pakistan as the best fit location based on annual average daily solar radiations (AADSR) data retrieved from National Aeronautics and Space Administration (NASA) meteorological data. Helioscope software is used to select −15◦ tilt and 180◦ azimuthal angles, which further increased Quetta’s AADSR value from 5.54 kWh/m2 /d to 5.93 kWh/m2 /d. For research significance, a realistic approach is undertaken by proper selection of solar panel type based on Quetta’s annual average temperature, load categorization, user selection and inputs from a solar energy expert. Finally, initial cost, investment and GHG mitigation analysis are carried out in RETScreen Expert software, which validates the minute but the prominent role of a single, end energy user by mitigating 122 tons of CO2 in 25-year project life span. Further, the proposed project favors end-user financially by recovering its $4501 initial cost in less than four years by effectively meeting its energy demand and saving $1195 per annum. 
  •  
9.
  • Homod, Raad Z., et al. (författare)
  • Deep clustering of cooperative multi-agent reinforcement learning to optimize multi chiller HVAC systems for smart buildings energy management
  • 2023
  • Ingår i: Journal of Building Engineering. - : Elsevier. - 2352-7102. ; 65
  • Tidskriftsartikel (refereegranskat)abstract
    • Chillers are responsible for almost half of the total energy demand in buildings. Hence, the obligation of control systems of multi-chiller due to changes indoor environments is one of the most significant parts of a smart building. Such a controller is described as a nonlinear and multi-objective algorithm, and its fabrication is crucial to achieving the optimal balance between indoor thermal comfort and running a minimum number of chillers. This work proposes deep clustering of cooperative multi-agent reinforcement learning (DCCMARL) as well-suited to such system control, which supports centralized control by learning of agents. In MARL, since the learning of agents is based on discrete sets of actions and stats, this drawback significantly affects the model of agents for representing their actions with efficient performance. This drawback becomes considerably worse when increasing the number of agents, due to the increased complexity of solving MARL, which makes modeling policy very challenging. Therefore, the DCCMARL of multi-objective reinforcement learning is leveraging powerful frameworks of a hybrid clustering algorithm to deal with complexity and uncertainty, which is a critical factor that influences to the achievement of high levels of a performance action. The results showed that the ability of agents to manipulate the behavior of the smart building could improve indoor thermal conditions, as well as save energy up to 44.5% compared to conventional methods. It seems reasonable to conclude that agents' performance is influenced by what type of model structure.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy