SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ahrén Bo) ;pers:(Holst Jens J)"

Sökning: WFRF:(Ahrén Bo) > Holst Jens J

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ahrén, Bo, et al. (författare)
  • Characterization of GLP-1 effects on beta-cell function after meal ingestion in humans.
  • 2003
  • Ingår i: Diabetes Care. - : American Diabetes Association. - 1935-5548 .- 0149-5992. ; 26:10, s. 2860-2864
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE—Glucagon-like peptide 1 (GLP-1) is an incretin that augments insulin secretion after meal intake and is developed for treatment of type 2 diabetes. As a novel therapeutic agent, characteristics of its β-cell effects are important to establish. Previously, β-cell effects of GLP-1 have been characterized in humans during graded intravenous infusions of glucose, whereas its effects after more physiological stimuli, like meal intake, are not known. RESEARCH DESIGN AND METHODS—Eight women (aged 69 years, fasting glucose 3.7–10.3 mmol/l, BMI 22.4–43.9 kg/m2) who had fasted overnight were served a breakfast (450 kcal) with intravenous infusion of saline or synthetic GLP-1 (0.75 pmol · kg–1 · min–1), and β-cell function was evaluated by estimating the relationship between glucose concentration and insulin secretion (calculated by deconvolution of C-peptide data). RESULTS—GLP-1 markedly augmented insulin secretion, despite lower glucose. Total insulin secretion was 29.7 ± 4.2 nmol/m2 with GLP-1 versus 21.0 ± 1.6 nmol/m2 with saline (P = 0.048). GLP-1 increased the dose-response relationship between glucose concentration and insulin secretion (70 ± 26 with GLP-1 versus 38 ± 16 pmol insulin · min−1 · m2 · mmol−1 glucose · l without, P = 0.037) and augmented the potentiation factor that modulates the dose response (2.71 ± 0.42 with GLP-1 versus 0.97 ± 0.17 without, P = 0.005). The potentiation factor correlated to GLP-1 concentration (r = 0.53, P < 0.001); a 10-fold increase in GLP-1 levels produced a twofold increase in the potentiation factor. These effects of GLP-1 did not correlate with fasting glucose levels or BMI. CONCLUSIONS—Administration of GLP-1 along with ingestion of a meal augments insulin secretion in humans by a dose-dependent potentiation of the dose-response relationship between plasma glucose and insulin secretion.
  •  
2.
  • Carr, Richard D, et al. (författare)
  • Secretion and Dipeptidyl Peptidase-4-Mediated Metabolism of Incretin Hormones after a Mixed Meal or Glucose Ingestion in Obese Compared to Lean, Nondiabetic Men.
  • 2010
  • Ingår i: The Journal of clinical endocrinology and metabolism. - : The Endocrine Society. - 1945-7197 .- 0021-972X. ; 95, s. 872-878
  • Tidskriftsartikel (refereegranskat)abstract
    • Context: Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are cleaved by dipeptidyl peptidase-4 (DPP-4); plasma activity of DPP-4 may be increased in obesity. The impact of this increase on incretin hormone secretion and metabolism is not known. Objective: The aim of the study was to assess incretin hormone secretion and degradation in lean and obese nondiabetic subjects. Design, Settings, and Participants: We studied the ingestion of a mixed meal (560 kcal) or oral glucose (2 g/kg) in healthy lean (n = 12; body mass index, 20-25 kg/m(2)) or obese (n = 13; body mass index, 30-35 kg/m(2)) males at a University Clinical Research Unit. Main Outcome Measures: We measured the area under the curve of plasma intact (i) and total (t) GIP and GLP-1 after meal ingestion and oral glucose. Results: Plasma DPP-4 activity was higher in the obese subjects (38.5 +/- 3.0 vs. 26.7 +/- 1.6 mmol/min . mul; P = 0.002). Although GIP secretion (AUCtGIP) was not reduced in obese subjects after meal ingestion or oral glucose, AUCiGIP was lower in obese subjects (8.5 +/- 0.6 vs. 12.7 +/- 0.9 nmol/liter x 300 min; P < 0.001) after meal ingestion. GLP-1 secretion (AUCtGLP-1) was reduced in obese subjects after both meal ingestion (7.3 +/- 0.9 vs. 10.0 +/- 0.6 nmol/liter x 300 min; P = 0.022) and oral glucose (6.6 +/- 0.8 vs. 9.6 +/- 1.1 nmol/liter x 180 min; P = 0.035). iGLP-1 was reduced in parallel to tGLP-1. Conclusions: 1) Release and degradation of the two incretin hormones show dissociated changes in obesity: GLP-1 but not GIP secretion is lower after meal ingestion and oral glucose, whereas GIP but not GLP-1 metabolism is increased after meal ingestion. 2) Increased plasma DPP-4 activity in obesity is not associated with a generalized augmented incretin hormone metabolism.
  •  
3.
  •  
4.
  • Lindgren, Ola, et al. (författare)
  • Incretin Effect after Oral Amino Acid Ingestion in Humans.
  • 2015
  • Ingår i: Journal of Clinical Endocrinology and Metabolism. - : The Endocrine Society. - 1945-7197 .- 0021-972X. ; 100:3, s. 1172-1176
  • Tidskriftsartikel (refereegranskat)abstract
    • Context: The incretin effect is the augmented insulin secretion by oral versus intravenous glucose at matching glucose levels. We previously demonstrated an augmented insulin secretion when fat is given orally rather than intravenously, suggesting an incretin effect also after fat. However, whether there is an incretin effect is also present after amino acid ingestion is not known. Objective: To explore insulin secretion and islet hormones after oral and intravenous amino acid administration at matched total amino acid concentrations in healthy subjects. Design: Amino acid mixture (Vaminolac(R)) was administered orally or intravenously at a rate resulting in matching total amino acid concentrations to twelve male volunteers with age 22.5±1.4 yr and BMI 22.4±1.4 kg/m(2), who had no history of diabetes. Main outcome measures: Area under the 120 min curve (AUC) for insulin, C-peptide, glucagon, intact and total glucagon like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) and insulin secretory rate and insulin clearance. Results: Insulin, C-peptide and glucagon levels increased after both oral and intravenous administration, but insulin secretion was 25% higher after oral than after intravenous amino acid challenges (P=0.006), whereas there was no significant difference in the glucagon response. Intact and total GIP rose after oral but not after intravenous amino acid administration, whereas intact and total GLP-1 levels did not change significantly in either test. Conclusion: Oral amino acid mixture ingestion elicits a stronger insulin secretory response than intravenous amino acid at matching amino acid levels and that this is associated with increased GIP level, suggesting that an incretin effect exists also after oral amino acids, possibly mediated by GIP.
  •  
5.
  • Lindgren, Ola, et al. (författare)
  • Incretin Hormone and Insulin Responses to Oral Versus Intravenous Lipid Administration in Humans.
  • 2011
  • Ingår i: The Journal of clinical endocrinology and metabolism. - : The Endocrine Society. - 1945-7197 .- 0021-972X. ; 96, s. 2519-2524
  • Tidskriftsartikel (refereegranskat)abstract
    • Context: The incretin effect is responsible for the higher insulin response to oral glucose than to iv glucose at matching glucose levels. It is not known whether this effect is restricted to glucose only. Objective: The aim of the study was to examine whether insulin and incretin hormone responses are higher after oral vs. iv challenge of a lipid emulsion with matching triglyceride levels in humans. Design, Settings, and Participants: A lipid emulsion (Intralipid) was administered orally (3 ml/kg) or iv (variable infusion rates to match triglyceride levels after oral ingestion) in healthy lean males (n = 12) at a University Clinical Research Unit. Samples were collected during 300 min. Main Outcome Measures: We measured the suprabasal area under the curve for insulin, glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), and the insulin secretory rate based on C-peptide levels by deconvolution. Results: Triglyceride levels increased similarly after oral and iv lipid; also, glucose and free fatty acid levels were similar in the two tests. Oral lipid elicited a clear insulin and C-peptide response, whereas no insulin or C-peptide responses were observed during iv lipid. Total and intact GIP and GLP-1 levels both increased after oral lipid administration but were not significantly altered after iv lipid. Conclusions: At matching triglyceride levels and with no difference in glucose and free fatty acid levels, oral lipid ingestion but not iv lipid infusion elicits a clear insulin response in association with increased GIP and GLP-1 concentrations. This may suggest that the incretin hormones also contribute to the islet response to noncarbohydrate nutrients.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy