SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Alawi K) "

Search: WFRF:(Alawi K)

  • Result 1-10 of 15
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Tabiri, S, et al. (author)
  • 2021
  • swepub:Mat__t
  •  
2.
  • Bravo, L, et al. (author)
  • 2021
  • swepub:Mat__t
  •  
3.
  • Campbell, PJ, et al. (author)
  • Pan-cancer analysis of whole genomes
  • 2020
  • In: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 578:7793, s. 82-
  • Journal article (peer-reviewed)abstract
    • Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale1–3. Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4–5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter4; identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation5,6; analyses timings and patterns of tumour evolution7; describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity8,9; and evaluates a range of more-specialized features of cancer genomes8,10–18.
  •  
4.
  • Menden, MP, et al. (author)
  • Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen
  • 2019
  • In: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10:1, s. 2674-
  • Journal article (peer-reviewed)abstract
    • The effectiveness of most cancer targeted therapies is short-lived. Tumors often develop resistance that might be overcome with drug combinations. However, the number of possible combinations is vast, necessitating data-driven approaches to find optimal patient-specific treatments. Here we report AstraZeneca’s large drug combination dataset, consisting of 11,576 experiments from 910 combinations across 85 molecularly characterized cancer cell lines, and results of a DREAM Challenge to evaluate computational strategies for predicting synergistic drug pairs and biomarkers. 160 teams participated to provide a comprehensive methodological development and benchmarking. Winning methods incorporate prior knowledge of drug-target interactions. Synergy is predicted with an accuracy matching biological replicates for >60% of combinations. However, 20% of drug combinations are poorly predicted by all methods. Genomic rationale for synergy predictions are identified, including ADAM17 inhibitor antagonism when combined with PIK3CB/D inhibition contrasting to synergy when combined with other PI3K-pathway inhibitors in PIK3CA mutant cells.
  •  
5.
  • Jensterle, M, et al. (author)
  • The Relationship between COVID-19 and Hypothalamic-Pituitary-Adrenal Axis: A Large Spectrum from Glucocorticoid Insufficiency to Excess-The CAPISCO International Expert Panel
  • 2022
  • In: International journal of molecular sciences. - : MDPI AG. - 1422-0067. ; 23:13
  • Journal article (peer-reviewed)abstract
    • Coronavirus disease 2019 (COVID-19) is a highly heterogeneous disease regarding severity, vulnerability to infection due to comorbidities, and treatment approaches. The hypothalamic–pituitary–adrenal (HPA) axis has been identified as one of the most critical endocrine targets of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that might significantly impact outcomes after infection. Herein we review the rationale for glucocorticoid use in the setting of COVID-19 and emphasize the need to have a low index of suspicion for glucocorticoid-induced adrenal insufficiency, adjusting for the glucocorticoid formulation used, dose, treatment duration, and underlying health problems. We also address several additional mechanisms that may cause HPA axis dysfunction, including critical illness-related corticosteroid insufficiency, the direct cytopathic impacts of SARS-CoV-2 infection on the adrenals, pituitary, and hypothalamus, immune-mediated inflammations, small vessel vasculitis, microthrombotic events, the resistance of cortisol receptors, and impaired post-receptor signaling, as well as the dissociation of ACTH and cortisol regulation. We also discuss the increased risk of infection and more severe illness in COVID-19 patients with pre-existing disorders of the HPA axis, from insufficiency to excess. These insights into the complex regulation of the HPA axis reveal how well the body performs in its adaptive survival mechanism during a severe infection, such as SARS-CoV-2, and how many parameters might disbalance the outcomes of this adaptation.
  •  
6.
  •  
7.
  •  
8.
  • Mainas, G, et al. (author)
  • Associations between Periodontitis, COVID-19, and Cardiometabolic Complications: Molecular Mechanisms and Clinical Evidence
  • 2023
  • In: Metabolites. - : MDPI AG. - 2218-1989. ; 13:1
  • Journal article (peer-reviewed)abstract
    • Periodontitis is a microbially driven, host-mediated disease that leads to loss of periodontal attachment and resorption of bone. It is associated with the elevation of systemic inflammatory markers and with the presence of systemic comorbidities. Coronavirus disease 2019 (COVID-19) is a contagious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although the majority of patients have mild symptoms, others experience important complications that can lead to death. After the spread of the COVID-19 pandemic, several investigations demonstrating the possible relationship between periodontitis and COVID-19 have been reported. In addition, both periodontal disease and COVID-19 seem to provoke and/or impair several cardiometabolic complications such as cardiovascular disease, type 2 diabetes, metabolic syndrome, dyslipidemia, insulin resistance, obesity, non-alcoholic fatty liver disease, and neurological and neuropsychiatric complications. Therefore, due to the increasing number of investigations focusing on the periodontitis-COVID-19 relationship and considering the severe complications that such an association might cause, this review aims to summarize all existing emerging evidence regarding the link between the periodontitis-COVID-19 axis and consequent cardiometabolic impairments.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view