SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Albanes Demetrius) ;pers:(Rothman Nathaniel)"

Search: WFRF:(Albanes Demetrius) > Rothman Nathaniel

  • Result 1-10 of 35
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Bernatsky, Sasha, et al. (author)
  • Lupus-related single nucleotide polymorphisms and risk of diffuse large B-cell lymphoma
  • 2017
  • In: Lupus Science and Medicine. - : BMJ. - 2053-8790. ; 4:1
  • Journal article (peer-reviewed)abstract
    • Objective: Determinants of the increased risk of diffuse large B-cell lymphoma (DLBCL) in SLE are unclear. Using data from a recent lymphoma genome-wide association study (GWAS), we assessed whether certain lupus-related single nucleotide polymorphisms (SNPs) were also associated with DLBCL. Methods: GWAS data on European Caucasians from the International Lymphoma Epidemiology Consortium (InterLymph) provided a total of 3857 DLBCL cases and 7666 general-population controls. Data were pooled in a random-effects meta-analysis. Results: Among the 28 SLE-related SNPs investigated, the two most convincingly associated with risk of DLBCL included the CD40 SLE risk allele rs4810485 on chromosome 20q13 (OR per risk allele=1.09, 95% CI 1.02 to 1.16, p=0.0134), and the HLA SLE risk allele rs1270942 on chromosome 6p21.33 (OR per risk allele=1.17, 95% CI 1.01 to 1.36, p=0.0362). Of additional possible interest were rs2205960 and rs12537284. The rs2205960 SNP, related to a cytokine of the tumour necrosis factor superfamily TNFSF4, was associated with an OR per risk allele of 1.07, 95% CI 1.00 to 1.16, p=0.0549. The OR for the rs12537284 (chromosome 7q32, IRF5 gene) risk allele was 1.08, 95% CI 0.99 to 1.18, p=0.0765. Conclusions: These data suggest several plausible genetic links between DLBCL and SLE.
  •  
2.
  • Berndt, Sonja, I, et al. (author)
  • Distinct germline genetic susceptibility profiles identified for common non-Hodgkin lymphoma subtypes
  • 2022
  • In: Leukemia. - : Springer Nature. - 0887-6924 .- 1476-5551. ; 36:12, s. 2835-2844
  • Journal article (peer-reviewed)abstract
    • Lymphoma risk is elevated for relatives with common non-Hodgkin lymphoma (NHL) subtypes, suggesting shared genetic susceptibility across subtypes. To evaluate the extent of mutual heritability among NHL subtypes and discover novel loci shared among subtypes, we analyzed data from eight genome-wide association studies within the InterLymph Consortium, including 10,629 cases and 9505 controls. We utilized Association analysis based on SubSETs (ASSET) to discover loci for subsets of NHL subtypes and evaluated shared heritability across the genome using Genome-wide Complex Trait Analysis (GCTA) and polygenic risk scores. We discovered 17 genome-wide significant loci (P < 5 × 10−8) for subsets of NHL subtypes, including a novel locus at 10q23.33 (HHEX) (P = 3.27 × 10−9). Most subset associations were driven primarily by only one subtype. Genome-wide genetic correlations between pairs of subtypes varied broadly from 0.20 to 0.86, suggesting substantial heterogeneity in the extent of shared heritability among subtypes. Polygenic risk score analyses of established loci for different lymphoid malignancies identified strong associations with some NHL subtypes (P < 5 × 10−8), but weak or null associations with others. Although our analyses suggest partially shared heritability and biological pathways, they reveal substantial heterogeneity among NHL subtypes with each having its own distinct germline genetic architecture.
  •  
3.
  • Berndt, Sonja I., et al. (author)
  • Genome-wide association study identifies multiple risk loci for chronic lymphocytic leukemia
  • 2013
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 45:8, s. 868-U202
  • Journal article (peer-reviewed)abstract
    • Genome-wide association studies (GWAS) have previously identified 13 loci associated with risk of chronic lymphocytic leukemia or small lymphocytic lymphoma (CLL). To identify additional CLL susceptibility loci, we conducted the largest meta-analysis for CLL thus far, including four GWAS with a total of 3,100 individuals with CLL (cases) and 7,667 controls. In the meta-analysis, we identified ten independent associated SNPs in nine new loci at 10q23.31 (ACTA2 or FAS (ACTA2/FAS), P = 1.22 x 10(-14)), 18q21.33 (BCL2, P = 7.76 x 10(-11)), 11p15.5 (C11orf21, P = 2.15 x 10(-10)), 4q25 (LEF1, P = 4.24 x 10(-10)), 2q33.1 (CASP10 or CASP8 (CASP10/CASP8), P = 2.50 x 10(-9)), 9p21.3 (CDKN2B-AS1, P = 1.27 x 10(-8)), 18q21.32 (PMAIP1, P = 2.51 x 10(-8)), 15q15.1 (BMF, P = 2.71 x 10(-10)) and 2p22.2 (QPCT, P = 1.68 x 10(-8)), as well as an independent signal at an established locus (2q13, ACOXL, P = 2.08 x 10(-18)). We also found evidence for two additional promising loci below genome-wide significance at 8q22.3 (ODF1, P = 5.40 x 10(-8)) and 5p15.33 (TERT, P = 1.92 x 10(-7)). Although further studies are required, the proximity of several of these loci to genes involved in apoptosis suggests a plausible underlying biological mechanism.
  •  
4.
  • Byun, Jinyoung, et al. (author)
  • Cross-ancestry genome-wide meta-analysis of 61,047 cases and 947,237 controls identifies new susceptibility loci contributing to lung cancer
  • 2022
  • In: Nature Genetics. - : Nature Research. - 1061-4036 .- 1546-1718. ; 54:8, s. 1167-1177
  • Journal article (peer-reviewed)abstract
    • To identify new susceptibility loci to lung cancer among diverse populations, we performed cross-ancestry genome-wide association studies in European, East Asian and African populations and discovered five loci that have not been previously reported. We replicated 26 signals and identified 10 new lead associations from previously reported loci. Rare-variant associations tended to be specific to populations, but even common-variant associations influencing smoking behavior, such as those with CHRNA5 and CYP2A6, showed population specificity. Fine-mapping and expression quantitative trait locus colocalization nominated several candidate variants and susceptibility genes such as IRF4 and FUBP1. DNA damage assays of prioritized genes in lung fibroblasts indicated that a subset of these genes, including the pleiotropic gene IRF4, potentially exert effects by promoting endogenous DNA damage.
  •  
5.
  • Cerhan, James R., et al. (author)
  • Genome-wide association study identifies multiple susceptibility loci for diffuse large B cell lymphoma
  • 2014
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 46:11, s. 1233-1238
  • Journal article (peer-reviewed)abstract
    • Diffuse large B cell lymphoma (DLBCL) is the most common lymphoma subtype and is clinically aggressive. To identify genetic susceptibility loci for DLBCL, we conducted a meta-analysis of 3 new genome-wide association studies (GWAS) and 1 previous scan, totaling 3,857 cases and 7,666 controls of European ancestry, with additional genotyping of 9 promising SNPs in 1,359 cases and 4,557 controls. In our multi-stage analysis, five independent SNPs in four loci achieved genome-wide significance marked by rs116446171 at 6p25.3 (EXOC2; P = 2.33 x 10(-21)), rs2523607 at 6p21.33 (HLA-B; P = 2.40 x 10(-10)), rs79480871 at 2p23.3 (NCOA1; P = 4.23 x 10(-8)) and two independent SNPs, rs13255292 and rs4733601, at 8q24.21 (PVT1; P = 9.98 x 10(-13) and 3.63 x 10(-11), respectively). These data provide substantial new evidence for genetic susceptibility to this B cell malignancy and point to pathways involved in immune recognition and immune function in the pathogenesis of DLBCL.
  •  
6.
  • Din, Lennox, et al. (author)
  • Genetic overlap between autoimmune diseases and non-Hodgkin lymphoma subtypes
  • 2019
  • In: Genetic Epidemiology. - : WILEY. - 0741-0395 .- 1098-2272. ; 43:7, s. 844-863
  • Journal article (peer-reviewed)abstract
    • Epidemiologic studies show an increased risk of non-Hodgkin lymphoma (NHL) in patients with autoimmune disease (AD), due to a combination of shared environmental factors and/or genetic factors, or a causative cascade: chronic inflammation/antigen-stimulation in one disease leads to another. Here we assess shared genetic risk in genome-wide-association-studies (GWAS). Secondary analysis of GWAS of NHL subtypes (chronic lymphocytic leukemia, diffuse large B-cell lymphoma, follicular lymphoma, and marginal zone lymphoma) and ADs (rheumatoid arthritis, systemic lupus erythematosus, and multiple sclerosis). Shared genetic risk was assessed by (a) description of regional genetic of overlap, (b) polygenic risk score (PRS), (c)"diseasome", (d)meta-analysis. Descriptive analysis revealed few shared genetic factors between each AD and each NHL subtype. The PRS of ADs were not increased in NHL patients (nor vice versa). In the diseasome, NHLs shared more genetic etiology with ADs than solid cancers (p =.0041). A meta-analysis (combing AD with NHL) implicated genes of apoptosis and telomere length. This GWAS-based analysis four NHL subtypes and three ADs revealed few weakly-associated shared loci, explaining little total risk. This suggests common genetic variation, as assessed by GWAS in these sample sizes, may not be the primary explanation for the link between these ADs and NHLs.
  •  
7.
  • Figueroa, Jonine D., et al. (author)
  • Genome-wide association study identifies multiple loci associated with bladder cancer risk
  • 2014
  • In: Human Molecular Genetics. - : Oxford University Press. - 0964-6906 .- 1460-2083. ; 23:5, s. 1387-1398
  • Journal article (peer-reviewed)abstract
    • andidate gene and genome-wide association studies (GWAS) have identified 11 independent susceptibility loci associated with bladder cancer risk. To discover additional risk variants, we conducted a new GWAS of 2422 bladder cancer cases and 5751 controls, followed by a meta-analysis with two independently published bladder cancer GWAS, resulting in a combined analysis of 6911 cases and 11 814 controls of European descent. TaqMan genotyping of 13 promising single nucleotide polymorphisms with P < 1 × 10−5 was pursued in a follow-up set of 801 cases and 1307 controls. Two new loci achieved genome-wide statistical significance: rs10936599 on 3q26.2 (P = 4.53 × 10−9) and rs907611 on 11p15.5 (P = 4.11 × 10−8). Two notable loci were also identified that approached genome-wide statistical significance: rs6104690 on 20p12.2 (P = 7.13 × 10−7) and rs4510656 on 6p22.3 (P = 6.98 × 10−7); these require further studies for confirmation. In conclusion, our study has identified new susceptibility alleles for bladder cancer risk that require fine-mapping and laboratory investigation, which could further understanding into the biological underpinnings of bladder carcinogenesis.
  •  
8.
  • Figueroa, Jonine D., et al. (author)
  • Identification of a novel susceptibility locus at 13q34 and refinement of the 20p12.2 region as a multi-signal locus associated with bladder cancer risk in individuals of European ancestry
  • 2016
  • In: Human Molecular Genetics. - : Oxford University Press. - 0964-6906 .- 1460-2083. ; 25:6, s. 1203-1214
  • Journal article (peer-reviewed)abstract
    • Candidate gene and genome-wide association studies (GWAS) have identified 15 independent genomic regions associated with bladder cancer risk. In search for additional susceptibility variants, we followed up on four promising single-nucleotide polymorphisms (SNPs) that had not achieved genome-wide significance in 6911 cases and 11 814 controls (rs6104690, rs4510656, rs5003154 and rs4907479, P < 1 × 10−6), using additional data from existing GWAS datasets and targeted genotyping for studies that did not have GWAS data. In a combined analysis, which included data on up to 15 058 cases and 286 270 controls, two SNPs achieved genome-wide statistical significance: rs6104690 in a gene desert at 20p12.2 (P = 2.19 × 10−11) and rs4907479 within the MCF2L gene at 13q34 (P = 3.3 × 10−10). Imputation and fine-mapping analyses were performed in these two regions for a subset of 5551 bladder cancer cases and 10 242 controls. Analyses at the 13q34 region suggest a single signal marked by rs4907479. In contrast, we detected two signals in the 20p12.2 region—the first signal is marked by rs6104690, and the second signal is marked by two moderately correlated SNPs (r2 = 0.53), rs6108803 and the previously reported rs62185668. The second 20p12.2 signal is more strongly associated with the risk of muscle-invasive (T2-T4 stage) compared with non-muscle-invasive (Ta, T1 stage) bladder cancer (case–case P ≤ 0.02 for both rs62185668 and rs6108803). Functional analyses are needed to explore the biological mechanisms underlying these novel genetic associations with risk for bladder cancer.
  •  
9.
  • Fu, Yi-Ping, et al. (author)
  • The 19q12 Bladder Cancer GWAS Signal : Association with Cyclin E Function and Aggressive Disease
  • 2014
  • In: Cancer Research. - 0008-5472 .- 1538-7445. ; 74:20, s. 5808-5818
  • Journal article (peer-reviewed)abstract
    • A genome-wide association study (GWAS) of bladder cancer identified a genetic marker rs8102137 within the 19q12 region as a novel susceptibility variant. This marker is located upstream of the CCNE1 gene, which encodes cyclin E, a cell-cycle protein. We performed genetic fine-mapping analysis of the CCNE1 region using data from two bladder cancer GWAS (5,942 cases and 10,857 controls). We found that the original GWAS marker rs8102137 represents a group of 47 linked SNPs (with r(2) >= 0.7) associated with increased bladder cancer risk. From this group, we selected a functional promoter variant rs7257330, which showed strong allele-specific binding of nuclear proteins in several cell lines. In both GWASs, rs7257330 was associated only with aggressive bladder cancer, with a combined per-allele OR = 1.18 [95% confidence interval (CI), 1.09-1.27, P = 4.67 x 10(-5)] versus OR = 1.01 (95% CI, 0.93-1.10, P = 0.79) for nonaggressive disease, with P = 0.0015 for case-only analysis. Cyclin E protein expression analyzed in 265 bladder tumors was increased in aggressive tumors (P = 0.013) and, independently, with each rs7257330-A risk allele (P-trend = 0.024). Overexpression of recombinant cyclin E in cell lines caused significant acceleration of cell cycle. In conclusion, we defined the 19q12 signal as the first GWAS signal specific for aggressive bladder cancer. Molecular mechanisms of this genetic association may be related to cyclin E overexpression and alteration of cell cycle in carriers of CCNE1 risk variants. In combination with established bladder cancer risk factors and other somatic and germline genetic markers, the CCNE1 variants could be useful for inclusion into bladder cancer risk prediction models.
  •  
10.
  • Henrion, Marc Y R, et al. (author)
  • Common variation at 1q24.1 (ALDH9A1) is a potential risk factor for renal cancer
  • 2015
  • In: PLOS ONE. - : Public library science. - 1932-6203. ; 10:3
  • Journal article (peer-reviewed)abstract
    • So far six susceptibility loci for renal cell carcinoma (RCC) have been discovered by genome-wide association studies (GWAS). To identify additional RCC common risk loci, we performed a meta-analysis of published GWAS (totalling 2,215 cases and 8,566 controls of Western-European background) with imputation using 1000 Genomes Project and UK10K Project data as reference panels and followed up the most significant association signals [22 single nucleotide polymorphisms (SNPs) and 3 indels in eight genomic regions] in 383 cases and 2,189 controls from The Cancer Genome Atlas (TCGA). A combined analysis identified a promising susceptibility locus mapping to 1q24.1 marked by the imputed SNP rs3845536 (Pcombined =2.30x10-8). Specifically, the signal maps to intron 4 of the ALDH9A1 gene (aldehyde dehydrogenase 9 family, member A1). We further evaluated this potential signal in 2,461 cases and 5,081 controls from the International Agency for Research on Cancer (IARC) GWAS of RCC cases and controls from multiple European regions. In contrast to earlier findings no association was shown in the IARC series (P=0.94; Pcombined =2.73x10-5). While variation at 1q24.1 represents a potential risk locus for RCC, future replication analyses are required to substantiate our observation.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 35

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view