SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Alfonso F) ;pers:(Aalto Susanne 1964)"

Sökning: WFRF:(Alfonso F) > Aalto Susanne 1964

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gonzalez-Alfonso, E., et al. (författare)
  • Herschel observations of water vapour in Markarian 231
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518:Article Number: L43
  • Tidskriftsartikel (refereegranskat)abstract
    • The Ultra luminous infrared galaxy (ULIRG) Mrk 231 reveals up to seven rotational lines of water (H2O) in emission, including a very high-lying (Eupper = 640 K) line detected at a 4 sigma level, within the Herschel/SPIRE wavelength range (190
  •  
2.
  • Meijerink, R., et al. (författare)
  • Evidence for CO Shock Excitation in NGC 6240 from Herschel SPIRE Spectroscopy
  • 2013
  • Ingår i: Astrophysical Journal Letters. - 2041-8213 .- 2041-8205. ; 762:2, s. L16-L20
  • Tidskriftsartikel (refereegranskat)abstract
    • We present Herschel SPIRE FTS spectroscopy of the nearby luminous infrared galaxy NGC 6240. In total 20 linesare detected, including CO J = 4−3 through J = 13−12, 6 H2O rotational lines, and [C i] and [N ii] fine-structurelines. The CO to continuum luminosity ratio is 10 times higher in NGC 6240 than Mrk 231. Although the COladdersof NGC 6240 and Mrk 231 are very similar, UV and/or X-ray irradiation are unlikely to be responsible for theexcitation of the gas in NGC 6240.We applied both C and J shock models to the H2 v = 1–0 S(1) and v = 2–1 S(1)lines and the CO rotational ladder. The CO ladder is best reproduced by amodel with shock velocity vs = 10 km s−1and a pre-shock density nH = 5 × 104 cm−3. We find that the solution best fitting the H2 lines is degenerate. The shock velocities and number densities range between vs = 17–47 km s−1 and nH = 107–5×104 cm−3, respectively.The H2 lines thus need a much more powerful shock than the CO lines.We deduce that most of the gas is currently moderately stirred up by slow (10 km s−1) shocks while only a small fraction (1%) of the interstellar mediumis exposed to the high-velocity shocks. This implies that the gas is rapidly losing its highly turbulent motions. We argue that a high CO line-to-continuum ratio is a key diagnostic for the presence of shocks.
  •  
3.
  • Rosenberg, M. J. F., et al. (författare)
  • The Herschel Comprehensive (U)lirg Emission Survey (Hercules): Co Ladders, Fine Structure Lines, and Neutral Gas Cooling
  • 2015
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 801:2
  • Tidskriftsartikel (refereegranskat)abstract
    • (Ultra) luminous infrared galaxies ((U)LIRGs) are objects characterized by their extreme infrared (8-1000 mu m) luminosities (L-LIRG > 10(11) L-circle dot and L-ULIRG > 10(12) L-circle dot). The Herschel Comprehensive ULIRG Emission Survey (PI: van derWerf) presents a representative flux-limited sample of 29 (U)LIRGs that spans the full luminosity range of these objects (10(11)L(circle dot)
  •  
4.
  • van der Werf, P.P., et al. (författare)
  • Black hole accretion and star formation as drivers of gas excitation and chemistry in Markarian 231
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518:Article Number: L42
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a full high resolution SPIRE FTS spectrum of the nearby ultraluminous infrared galaxy Mrk 231. In total 25 lines are detected, including CO J = 5-4 through J = 13-12, 7 rotational lines of H2O, 3 of OH+ and one line each of H2O+, CH+, and HF. We find that the excitation of the CO rotational levels up to J = 8 can be accounted for by UV radiation from star formation. However, the approximately flat luminosity distribution of the CO lines over the rotational ladder above J = 8 requires the presence of a separate source of excitation for the highest CO lines. We explore X-ray heating by the accreting supermassive black hole in Mrk 231 as a source of excitation for these lines, and find that it can reproduce the observed luminosities. We also consider a model with dense gas in a strong UV radiation field to produce the highest CO lines, but find that this model strongly overpredicts the hot dust mass in Mrk 231. Our favoured model consists of a star forming disk of radius 560 pc, containing clumps of dense gas exposed to strong UV radiation, dominating the emission of CO lines up to J = 8. X-rays from the accreting supermassive black hole in Mrk 231 dominate the excitation and chemistry of the inner disk out to a radius of 160 pc, consistent with the X-ray power of the AGN in Mrk 231. The extraordinary luminosity of the OH+ and H2O+ lines reveals the signature of X-ray driven excitation and chemistry in this region.
  •  
5.
  • Falstad, Niklas, 1987, et al. (författare)
  • Hidden or missing outflows in highly obscured galaxy nuclei?
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 623
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the nuclear growth and feedback processes in galaxies requires investigating their often obscured central regions. One way to do this is to use (sub)millimeter line emission from vibrationally excited HCN (HCN-vib), which is thought to trace warm and highly enshrouded galaxy nuclei. It has been suggested that the most intense HCN-vib emission from a galaxy is connected to a phase of nuclear growth that occurs before the nuclear feedback processes have been fully developed. Aims. We aim to investigate if there is a connection between the presence of strong HCN-vib emission and the development of feedback in (ultra)luminous infrared galaxies ((U)LIRGs). Methods. We collected literature and archival data to compare the luminosities of rotational lines of HCN-vib, normalized to the total infrared luminosity, to the median velocities of 119 μm OH absorption lines, potentially indicating outflows, in a total of 17 (U)LIRGs. Results. The most HCN-vib luminous systems all lack signatures of significant molecular outflows in the far-infrared OH absorption lines. However, at least some of the systems with bright HCN-vib emission have fast and collimated outflows that can be seen in spectral lines at longer wavelengths, including in millimeter emission lines of CO and HCN (in its vibrational ground state) and in radio absorption lines of OH. Conclusions. We conclude that the galaxy nuclei with the highest L HCN-vib /L IR do not drive wide-angle outflows that are detectable using the median velocities of far-infrared OH absorption lines. This is possibly because of an orientation effect in which sources oriented in such a way that their outflows are not along our line of sight also radiate a smaller proportion of their infrared luminosity in our direction. It could also be that massive wide-angle outflows destroy the deeply embedded regions responsible for bright HCN-vib emission, so that the two phenomena cannot coexist. This would strengthen the idea that vibrationally excited HCN traces a heavily obscured stage of evolution before nuclear feedback mechanisms are fully developed.
  •  
6.
  • Gorski, Mark, 1989, et al. (författare)
  • A spectacular galactic scale magnetohydrodynamic powered wind in ESO 320-G030
  • 2024
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 684
  • Tidskriftsartikel (refereegranskat)abstract
    • How galaxies regulate nuclear growth through gas accretion by supermassive black holes (SMBHs) is one of the most fundamental questions in galaxy evolution. One potential way to regulate nuclear growth is through a galactic wind that removes gas from the nucleus. It is unclear whether galactic winds are powered by jets, mechanical winds, radiation, or via magnetohydrodynamic (MHD) processes. Compact obscured nuclei represent a significant phase of galactic nuclear growth. These galaxies hide growing SMBHs or unusual starbursts in their very opaque, extremely compact (r < 100 pc) centres. They are found in approximately 30% of the luminous and ultra-luminous infrared galaxy population. Here, we present high-resolution ALMA observations (∼30 mas, ∼5 pc) of ground-state and vibrationally excited HCN towards ESO 320-G030 (IRAS 11506-3851). ESO 320-G030 is an isolated luminous infrared galaxy known to host a compact obscured nucleus and a kiloparsec-scale molecular wind. Our analysis of these high-resolution observations excludes the possibility of a starburst-driven wind, a mechanically or energy driven active galactic nucleus wind, and exposes a molecular MDH wind. These results imply that the nuclear evolution of galaxies and the growth of SMBHs are similar to the growth of hot cores or protostars where gravitational collapse of the nuclear torus drives a MHD wind. These results mean galaxies are capable, in part, of regulating the evolution of their nuclei without feedback.
  •  
7.
  • Nishimura, Y., et al. (författare)
  • CON-quest: II. Spatially and spectrally resolved HCN/HCO + line ratios in local luminous and ultraluminous infrared galaxies
  • 2024
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 686
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Nuclear regions of ultraluminous and luminous infrared galaxies (U/LIRGs) are powered by starbursts and/or active galactic nuclei (AGNs). These regions are often obscured by extremely high columns of gas and dust. Molecular lines in the submillimeter windows have the potential to determine the physical conditions of these compact obscured nuclei (CONs). Aims. We aim to reveal the distributions of HCN and HCO+ emission in local U/LIRGs and investigate whether and how they are related to galaxy properties. Methods. Using the Atacama Large Millimeter/submillimeter Array (ALMA), we have conducted sensitive observations of the HCN J = 3-2 and HCO+J = 3-2 lines toward 23 U/LIRGs in the local Universe (z < 0.07) with a spatial resolution of ~0.3″ ( ~50-400 pc). Results. We detected both HCN and HCO+ in 21 galaxies, only HCN in one galaxy, and neither in one galaxy. The global HCN/HCO+ line ratios, averaged over scales of ~0.5-4 kpc, range from 0.4 to 2.3, with an unweighted mean of 1.1. These line ratios appear to have no systematic trend with bolometric AGN luminosity or star formation rate. The line ratio varies with position and velocity within each galaxy, with an average interquartile range of 0.38 on a spaxel-by-spaxel basis. In eight out of ten galaxies known to have outflows and/or inflows, we found spatially and kinematically symmetric structures of high line ratios. These structures appear as a collimated bicone in two galaxies and as a thin spherical shell in six galaxies. Conclusions. Non-LTE analysis suggests that the high HCN/HCO+ line ratio in outflows is predominantly influenced by the abundance ratio. Chemical model calculations indicate that the enhancement of HCN abundance in outflows is likely due to high-temperature chemistry triggered by shock heating. These results imply that the HCN/HCO+ line ratio can aid in identifying the outflow geometry when the shock velocity of the outflows is sufficiently high to heat the gas.
  •  
8.
  • Aalto, Susanne, 1964, et al. (författare)
  • Probing highly obscured, self-absorbed galaxy nuclei with vibrationally excited HCN
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 584
  • Tidskriftsartikel (refereegranskat)abstract
    • We present high resolution (0.'' 4) IRAM PdBI and ALMA mm and submm observations of the (ultra) luminous infrared galaxies ((U)LIRGs) IRAS 17208-0014, Arp220, IC 860 and Zw049.057 that reveal intense line emission from vibrationally excited (nu(2) = 1) J = 3-2 and 4-3 HCN. The emission is emerging from buried, compact (r 5 x 10(13) L-circle dot kpc(-2). These nuclei are likely powered by accreting supermassive black holes (SMBHs) and/or hot (>200 K) extreme starbursts. Vibrational, nu(2) = 1, lines of HCN are excited by intense 14 mu m mid-infrared emission and are excellent probes of the dynamics, masses, and physical conditions of (U)LIRG nuclei when H-2 column densities exceed 10(24) cm(-2). It is clear that these lines open up a new interesting avenue to gain access to the most obscured AGNs and starbursts. Vibrationally excited HCN acts as a proxy for the absorbed mid-infrared emission from the embedded nuclei, which allows for reconstruction of the intrinsic, hotter dust SED. In contrast, we show strong evidence that the ground vibrational state (. = 0), J = 3-2 and 4-3 rotational lines of HCN and HCO+ fail to probe the highly enshrouded, compact nuclear regions owing to strong self-and continuum absorption. The HCN and HCO+ line profiles are double-peaked because of the absorption and show evidence of non-circular motions-possibly in the form of in-or outflows. Detections of vibrationally excited HCN in external galaxies are so far limited to ULIRGs and early-type spiral LIRGs, and we discuss possible causes for this. We tentatively suggest that the peak of vibrationally excited HCN emission is connected to a rapid stage of nuclear growth, before the phase of strong feedback.
  •  
9.
  • Cicone, C., et al. (författare)
  • Massive molecular outflows and evidence for AGN feedback from CO observations
  • 2014
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 562, s. 25-
  • Tidskriftsartikel (refereegranskat)abstract
    • We study the properties of massive, galactic-scale outflows of molecular gas and investigate their impact on galaxy evolution. We present new IRAMPdBI CO(1-0) observations of local ultra-luminous infrared galaxies (ULIRGs) and quasar-hosts: a clear signature of massive and energetic molecular outflows, extending on kpc scales, is found in the CO(1-0) kinematics of four out of seven sources, with measured outflow rates of several 100M(circle dot)yr(-1). We combine these new observations with data from the literature, and explore the nature and origin of massive molecular outflows within an extended sample of 19 local galaxies. We find that starburst-dominated galaxies have an outflow rate comparable to their star formation rate (SFR), or even higher by a factor of similar to 2-4, implying that starbursts can indeed be effective in removing cold gas from galaxies. Nevertheless, our results suggest that the presence of an active galactic nucleus (AGN) can boost the outflow rate by a large factor, which is found to increase with the L-AGN/L-bol ratio. The gas depletion time scales due to molecular outflows are anti-correlated with the presence and luminosity of an AGN in these galaxies, and range from a few hundred million years in starburst galaxies down to just a few million years in galaxies hosting powerful AGNs. In quasar hosts, the depletion time scales due to the outflow are much shorter than the depletion time scales due to star formation. We estimate the outflow kinetic power and find that, for galaxies hosting powerful AGNs, it corresponds to about 5% of the AGN luminosity, as expected by models of AGN feedback. Moreover, we find that momentum rates of about 20 L-AGN/c are common among the AGN-dominated sources in our sample. For "pure" starburst galaxies, our data tentatively support models in which outflows are mostly momentum-driven by the radiation pressure from young stars onto dusty clouds. Overall, our results indicate that, although starbursts are effective in powering massive molecular outflows, the presence of an AGN may strongly enhance such outflows, and therefore have a profound feedback effect on the evolution of galaxies by efficiently removing fuel for star formation, hence quenching star formation.
  •  
10.
  • Falstad, Niklas, 1987, et al. (författare)
  • CON-quest: Searching for the most obscured galaxy nuclei
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 649
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Some luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs) host extremely compact (r < 100 pc) and dusty nuclei. The high extinction associated with large column densities of gas and dust toward these objects render them hard to detect at many wavelengths. The intense infrared radiation arising from warm dust in these sources can provide a significant fraction of the bolometric luminosity of the galaxy and is prone to excite vibrational levels of molecules such as HCN. This results in emission from the rotational transitions of vibrationally excited HCN (HCN-vib); the brightest emission is found in compact obscured nuclei (CONs; ςHCN-vib > 1 L⊙ pc-2 in the J = 3-2 transition). However, there have been no systematic searches for CONs, and it is unknown how common they are. Aims. We aim to establish how common CONs are in the local Universe (z < 0.08), and whether their prevalence depends on the luminosity or other properties of the host galaxy. Methods. We conducted an Atacama Large Millimeter/submillimeter Array survey of the rotational J = 3-2 transition of HCN-vib in a volume-limited sample of 46 far-infrared luminous galaxies. Results. Compact obscured nuclei are identified in 38-13+18% of the ULIRGs, 21-6+12% of the LIRGs, and 0-0+9% of the lower luminosity galaxies. We find no dependence on the inclination of the host galaxy, but strong evidence of lower IRAS 25 μm to 60 μm flux density ratios (f25/f60) in CONs (with the exception of one galaxy, NGC 4418) compared to the rest of the sample. Furthermore, we find that CONs have stronger silicate features (s9.7 μm), but similar polycyclic aromatic hydrocarbon equivalent widths (EQW6.2 μm) compared to other galaxies. Along with signatures of molecular inflows seen in the far-infrared in most CONs, submillimeter observations also reveal compact, often collimated, outflows. Conclusions. In the local Universe, CONs are primarily found in (U)LIRGs, in which they are remarkably common. As such systems are often highly disturbed, inclinations are difficult to estimate, and high-resolution continuum observations of the individual nuclei are required to determine if the CON phenomenon is related to the inclinations of the nuclear disks. Further studies of the in- A nd outflow properties of CONs should also be conducted to investigate how these are connected to each other and to the CON phenomenon. The lower f25/f60 ratios in CONs as well as the results for the mid-infrared diagnostics investigated (EQW6.2 μm and s9.7 μm) are consistent with the notion that large dust columns gradually shift the radiation from the hot nucleus to longer wavelengths, making the mid- A nd far-infrared "photospheres"significantly cooler than the interior regions. Finally, to assess the importance of CONs in the context of galaxy evolution, it is necessary to extend this study to higher redshifts where (U)LIRGs are more common.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy