SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Almby Kristina E) ;pers:(Abrahamsson Niclas 1976)"

Sökning: WFRF:(Almby Kristina E) > Abrahamsson Niclas 1976

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Almby, Kristina E., et al. (författare)
  • Effects of Gastric Bypass Surgery on the Brain : Simultaneous Assessment of Glucose Uptake, Blood Flow, Neural Activity, and Cognitive Function During Normo- and Hypoglycemia
  • 2021
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 70:6, s. 1265-1277
  • Tidskriftsartikel (refereegranskat)abstract
    • While Roux-en-Y gastric bypass (RYGB) surgery in obese individuals typically improves glycemic control and prevents diabetes, it also frequently causes asymptomatic hypoglycemia. Previous work showed attenuated counterregulatory responses following RYGB. The underlying mechanisms as well as the clinical consequences are unclear. In this study, 11 subjects without diabetes with severe obesity were investigated pre- and post-RYGB during hyperinsulinemic normo-hypoglycemic clamps. Assessments were made of hormones, cognitive function, cerebral blood flow by arterial spin labeling, brain glucose metabolism by F-18-fluorodeoxyglucose (FDG) positron emission tomography, and activation of brain networks by functional MRI. Post- versus presurgery, we found a general increase of cerebral blood flow but a decrease of total brain FDG uptake during normoglycemia. During hypoglycemia, there was a marked increase in total brain FDG uptake, and this was similar for post- and presurgery, whereas hypothalamic FDG uptake was reduced during hypoglycemia. During hypoglycemia, attenuated responses of counterregulatory hormones and improvements in cognitive function were seen postsurgery. In early hypoglycemia, there was increased activation post- versus presurgery of neural networks in brain regions implicated in glucose regulation, such as the thalamus and hypothalamus. The results suggest adaptive responses of the brain that contribute to lowering of glycemia following RYGB, and the underlying mechanisms should be further elucidated.
  •  
2.
  • Almby, Kristina E., et al. (författare)
  • Effects of GLP-1 on counter-regulatory responses during hypoglycemia after GBP surgery
  • 2019
  • Ingår i: European Journal of Endocrinology. - : Bioscientifica. - 0804-4643 .- 1479-683X. ; 181:2, s. 161-171
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives: The aim of the study was to explore the role of GLP-1 receptor activation on the counter-regulation and symptoms of hypoglycemia in subjects who have undergone gastric bypass surgery (GBP).Design: Experimental hyperinsulinemic–hypoglycemic clamp study.Methods: Twelve post-GBP subjects participated in a randomized cross-over study with two hyperinsulinemic, hypoglycemic clamps (glucose nadir 2.7 mmol/L) performed on separate days with concomitant infusions of the GLP-1 analog exenatide or with saline, respectively. Continuous measurements of metabolites and counter-regulatory hormones as well as assessments of heart rate variability and symptoms of hypoglycemia were performed throughout the clamps.Results: No effect of GLP-1 receptor activation on counter-regulatory hormones (glucagon, catecholamines, cortisol, GH) or glucose infusion rate was seen, but we found indications of a downregulation of the sympathetic relative to the parasympathetic nerve activity, as reflected in heart rate variability. No significant differences in symptom of hypoglycemia were observed.Conclusions/interpretation: Short-term exposure to a GLP-1 receptor agonist does not seem to impact the counter-regulatory hormonal and metabolic responses in post-GBP subjects during hypoglycemic conditions, suggesting that the improvement in symptomatic hypoglycemia post-GBP seen following treatment with GLP-1 receptor agonists may be mediated by mechanism not directly involved in counter-regulation.
  •  
3.
  • Lundqvist, Martin H., et al. (författare)
  • Altered hormonal and autonomic nerve responses to hypo- and hyperglycaemia are found in overweight and insulin-resistant individuals and may contribute to the development of type 2 diabetes
  • 2021
  • Ingår i: Diabetologia. - : Springer. - 0012-186X .- 1432-0428. ; 64:3, s. 641-655
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis: Results from animal models and some clinical work suggest a role for the central nervous system (CNS) in glucose regulation and type 2 diabetes pathogenesis by modulation of glucoregulatory hormones and the autonomic nervous system (ANS). The aim of this study was to characterise the neuroendocrine response to various glucose concentrations in overweight and insulin-resistant individuals compared with lean individuals.Methods: Overweight/obese (HI, n = 15, BMI ≥27.0 kg/m2) and lean (LO, n = 15, BMI <27.0 kg/m2) individuals without diabetes underwent hyperinsulinaemic euglycaemic–hypoglycaemic clamps and hyperglycaemic clamps on two separate occasions with measurements of hormones, Edinburgh Hypoglycaemic Symptom Scale (ESS) score and heart rate variability (HRV). Statistical methods included groupwise comparisons with Mann–Whitney U tests, multilinear regressions and linear mixed models between neuroendocrine responses and continuous metabolic variables.Results: During hypoglycaemic clamps, there was an elevated cortisol response in HI vs LO (median ΔAUC 12,383 vs 4793 nmol/l × min; p = 0.050) and a significantly elevated adrenocorticotropic hormone (ACTH) response in HI vs LO (median ΔAUC 437.3 vs 162.0 nmol/l × min; p = 0.021). When adjusting for clamp glucose levels, obesity (p = 0.033) and insulin resistance (p = 0.009) were associated with elevated glucagon levels. By contrast, parasympathetic activity was less suppressed in overweight individuals at the last stage of hypoglycaemia compared with euglycaemia (high-frequency power of HRV, p = 0.024). M value was the strongest predictor for the ACTH and PHF responses, independent of BMI and other variables. There was a BMI-independent association between the cortisol response and ESS score response (p = 0.024). During hyperglycaemic clamps, overweight individuals displayed less suppression of glucagon levels (median ΔAUC −63.4% vs −73.0%; p = 0.010) and more suppression of sympathetic relative to parasympathetic activity (low-frequency/high-frequency power, p = 0.011).Conclusions/interpretation: This study supports the hypothesis that altered responses of insulin-antagonistic hormones and the ANS to glucose fluctuations occur in overweight and insulin-resistant individuals, and that these responses are probably partly mediated by the CNS. Their potential role in development of type 2 diabetes needs to be addressed in future research.
  •  
4.
  • Lundqvist, Martin H., et al. (författare)
  • Is the Brain a Key Player in Glucose Regulation and Development of Type 2 Diabetes?
  • 2019
  • Ingår i: Frontiers in Physiology. - : FRONTIERS MEDIA SA. - 1664-042X. ; 10
  • Forskningsöversikt (refereegranskat)abstract
    • Ever since Claude Bernards discovery in the mid 19th-century that a lesion in the floor of the third ventricle in dogs led to altered systemic glucose levels, a role of the CNS in whole-body glucose regulation has been acknowledged. However, this finding was later overshadowed by the isolation of pancreatic hormones in the 20th century. Since then, the understanding of glucose homeostasis and pathology has primarily evolved around peripheral mechanism. Due to scientific advances over these last few decades, however, increasing attention has been given to the possibility of the brain as a key player in glucose regulation and the pathogenesis of metabolic disorders such as type 2 diabetes. Studies of animals have enabled detailed neuroanatomical mapping of CNS structures involved in glucose regulation and key neuronal circuits and intracellular pathways have been identified. Furthermore, the development of neuroimaging techniques has provided methods to measure changes of activity in specific CNS regions upon diverse metabolic challenges in humans. In this narrative review, we discuss the available evidence on the topic. We conclude that there is much evidence in favor of active CNS involvement in glucose homeostasis but the relative importance of central vs. peripheral mechanisms remains to be elucidated. An increased understanding of this field may lead to new CNS-focusing pharmacologic strategies in the treatment of type 2 diabetes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy