SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Almby Kristina E) ;pers:(Kamble Prasad G.)"

Sökning: WFRF:(Almby Kristina E) > Kamble Prasad G.

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ahmed, Fozia, et al. (författare)
  • Role of Estrogen and Its Receptors in Adipose Tissue Glucose Metabolism in Pre- and Postmenopausal Women
  • 2022
  • Ingår i: Journal of Clinical Endocrinology and Metabolism. - : ENDOCRINE SOC. - 0021-972X .- 1945-7197. ; 107:5, s. E1879-E1889
  • Tidskriftsartikel (refereegranskat)abstract
    • Context: Reduced estrogen levels in postmenopausal women predispose them to metabolic side effects, including insulin resistance and type 2 diabetes; however, the cellular mechanisms are not well understood.Objective: This work aimed to study the expression of estrogen receptors in adipose tissue from pre- and postmenopausal women and the effects of estradiol (E2) on glucose uptake of adipocytes.Methods: Subcutaneous (SAT) and visceral adipose tissue (VAT) obtained from pre- and postmenopausal women (19-51 and 46-75 years old, respectively) were used to measure gene expression of ESR1 and ESR2. SAT tissue was incubated with E2, and glucose uptake and estrogen receptor levels were measured. Polymorphisms in ESR1 and ESR2 were addressed in public databases to identify single nucleotide polymorphisms associated with metabolic traits.Results: ESR2 expression was lower in pre- vs postmenopausal women, corresponding to lower ESR1:ESR2 gene expression ratio in postmenopausal women. In premenopausal women, the expression of ESR1 was higher in VAT than in SAT. In both pre- and postmenopausal women, ESR2 expression was lower in VAT than in SAT. In late, but not pre- or early postmenopausal women, E2 reduced glucose uptake and GLUT4 protein and increased expression of ESR2. ESR1 polymorphisms were associated with weight, body fat distribution, and total cholesterol, and ESR2 polymorphisms were associated with total cholesterol and triglyceride levels and with body fat percentage.Conclusion: E2 inhibits glucose utilization in human adipocytes in late postmenopausal women. Changes in glucose utilization over time since menopause may be explained by a lower ESR1:ESR2 ratio. This can have clinical implications on the timing of estrogen treatment in postmenopausal women.
  •  
2.
  • Almby, Kristina E., et al. (författare)
  • Time course of metabolic, neuroendocrine, and adipose effects during 2 years of follow-up after gastric bypass in patients with type 2 diabetes
  • 2021
  • Ingår i: Journal of Clinical Endocrinology and Metabolism. - : Oxford University Press. - 0021-972X .- 1945-7197. ; 106:10, s. E4049-E4061
  • Tidskriftsartikel (refereegranskat)abstract
    • Context: Roux-en-Y gastric bypass surgery (RYGB) markedly improves glycemia in patients with type 2 diabetes (T2D), but underlying mechanisms and changes over time are incompletely understood.Objective: Integrated assessment of neuroendocrine and metabolic changes over time inT2D patients undergoing RYGB.Design and Setting: Follow-up of single-center randomized study.Patients: Thirteen patients with obesity andT2D compared to 22 healthy subjects.Interventions: Blood chemistry, adipose biopsies, and heart rate variability were obtained before and 4, 24, and 104 weeks post-RYGB.Results: After RYGB, glucose-lowering drugs were discontinued and hemoglobin A1c fell from mean 55 to 41 mmol/mol by 104 weeks (P < 0.001). At 4 weeks, morning cortisol (P < 0.05) and adrenocorticotropin (P = 0.09) were reduced by 20%. Parasympathetic nerve activity (heart rate variability derived) increased at 4 weeks (P < 0.05) and peaked at 24 weeks (P < 0.01). C-reactive protein (CRP) and white blood cells were rapidly reduced (P < 0.01). At 104 weeks, basal and insulin-stimulated adipocyte glucose uptake increased by 3-fold vs baseline and expression of genes involved in glucose transport, fatty acid oxidation, and adipogenesis was upregulated (P < 0.01). Adipocyte volume was reduced by 4 weeks and more markedly at 104 weeks, by about 40% vs baseline (P < 0.01).Conclusions: We propose this order of events: (1) rapid glucose lowering (days); (2) attenuated cortisol axis activity and inflammation and increased parasympathetic tone (weeks); and (3) body fat and weight loss, increased adipose glucose uptake, and whole-body insulin sensitivity (months-years; similar to healthy controls).Thus, neuroendocrine pathways can partly mediate early glycemic improvement after RYGB, and adipose factors may promote long-term insulin sensitivity and normoglycemia.
  •  
3.
  •  
4.
  • Kamble, Prasad G., et al. (författare)
  • Estrogen interacts with glucocorticoids in the regulation of lipocalin 2 expression in human adipose tissue. Reciprocal roles of estrogen receptor alpha and beta in insulin resistance?
  • 2019
  • Ingår i: Molecular and Cellular Endocrinology. - : ELSEVIER IRELAND LTD. - 0303-7207 .- 1872-8057. ; 490, s. 28-36
  • Tidskriftsartikel (refereegranskat)abstract
    • The adipokine lipocalin 2 (LCN2) is linked to insulin resistance. Its expression in human adipose tissue (AT) can be regulated in a sex-specific manner by a synthetic glucocorticoid, dexamethasone, suggesting an underlying role of sex steroids. We show that 17-beta-estradiol (E2) dose-dependently increased LCN2 gene expression in subcutaneous AT from postmenopausal women. This was also seen in the presence of estrogen receptor (ER) alpha antagonist alone but not with ER beta antagonist, suggesting that E2 effects on LCN2 are mediated via ER beta pathway. Dexamethasone alone or E2 + dexamethasone had no significant effect on LCN2. However, E2+ dexamethasone increased LCN2 expression with ER alpha-blockade. Dexamethasone reduced ER alpha but increased ER beta expression. Dexamethasone can regulate LCN2 expression via inhibition of ER alpha and stimulation of ER beta and may contribute to the development of glucocorticoid-induced insulin resistance in human AT. In conclusion, ER beta and ER alpha pathways have opposite effects on LCN2 expression and they interact with glucocorticoid action.
  •  
5.
  • Lundqvist, Martin H., et al. (författare)
  • Altered hormonal and autonomic nerve responses to hypo- and hyperglycaemia are found in overweight and insulin-resistant individuals and may contribute to the development of type 2 diabetes
  • 2021
  • Ingår i: Diabetologia. - : Springer. - 0012-186X .- 1432-0428. ; 64:3, s. 641-655
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis: Results from animal models and some clinical work suggest a role for the central nervous system (CNS) in glucose regulation and type 2 diabetes pathogenesis by modulation of glucoregulatory hormones and the autonomic nervous system (ANS). The aim of this study was to characterise the neuroendocrine response to various glucose concentrations in overweight and insulin-resistant individuals compared with lean individuals.Methods: Overweight/obese (HI, n = 15, BMI ≥27.0 kg/m2) and lean (LO, n = 15, BMI <27.0 kg/m2) individuals without diabetes underwent hyperinsulinaemic euglycaemic–hypoglycaemic clamps and hyperglycaemic clamps on two separate occasions with measurements of hormones, Edinburgh Hypoglycaemic Symptom Scale (ESS) score and heart rate variability (HRV). Statistical methods included groupwise comparisons with Mann–Whitney U tests, multilinear regressions and linear mixed models between neuroendocrine responses and continuous metabolic variables.Results: During hypoglycaemic clamps, there was an elevated cortisol response in HI vs LO (median ΔAUC 12,383 vs 4793 nmol/l × min; p = 0.050) and a significantly elevated adrenocorticotropic hormone (ACTH) response in HI vs LO (median ΔAUC 437.3 vs 162.0 nmol/l × min; p = 0.021). When adjusting for clamp glucose levels, obesity (p = 0.033) and insulin resistance (p = 0.009) were associated with elevated glucagon levels. By contrast, parasympathetic activity was less suppressed in overweight individuals at the last stage of hypoglycaemia compared with euglycaemia (high-frequency power of HRV, p = 0.024). M value was the strongest predictor for the ACTH and PHF responses, independent of BMI and other variables. There was a BMI-independent association between the cortisol response and ESS score response (p = 0.024). During hyperglycaemic clamps, overweight individuals displayed less suppression of glucagon levels (median ΔAUC −63.4% vs −73.0%; p = 0.010) and more suppression of sympathetic relative to parasympathetic activity (low-frequency/high-frequency power, p = 0.011).Conclusions/interpretation: This study supports the hypothesis that altered responses of insulin-antagonistic hormones and the ANS to glucose fluctuations occur in overweight and insulin-resistant individuals, and that these responses are probably partly mediated by the CNS. Their potential role in development of type 2 diabetes needs to be addressed in future research.
  •  
6.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy