SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Ames D) ;lar1:(uu)"

Search: WFRF:(Ames D) > Uppsala University

  • Result 1-9 of 9
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  •  
4.
  • Satizabal, Claudia L., et al. (author)
  • Genetic architecture of subcortical brain structures in 38,851 individuals
  • 2019
  • In: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 51:11, s. 1624-
  • Journal article (peer-reviewed)abstract
    • Subcortical brain structures are integral to motion, consciousness, emotions and learning. We identified common genetic variation related to the volumes of the nucleus accumbens, amygdala, brainstem, caudate nucleus, globus pallidus, putamen and thalamus, using genome-wide association analyses in almost 40,000 individuals from CHARGE, ENIGMA and UK Biobank. We show that variability in subcortical volumes is heritable, and identify 48 significantly associated loci (40 novel at the time of analysis). Annotation of these loci by utilizing gene expression, methylation and neuropathological data identified 199 genes putatively implicated in neurodevelopment, synaptic signaling, axonal transport, apoptosis, inflammation/infection and susceptibility to neurological disorders. This set of genes is significantly enriched for Drosophila orthologs associated with neurodevelopmental phenotypes, suggesting evolutionarily conserved mechanisms. Our findings uncover novel biology and potential drug targets underlying brain development and disease.
  •  
5.
  • Hibar, Derrek P., et al. (author)
  • Novel genetic loci associated with hippocampal volume
  • 2017
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 8
  • Journal article (peer-reviewed)abstract
    • The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (r(g) = -0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness.
  •  
6.
  • Jia, TY, et al. (author)
  • Epigenome-wide meta-analysis of blood DNA methylation and its association with subcortical volumes: findings from the ENIGMA Epigenetics Working Group
  • 2021
  • In: Molecular psychiatry. - : Springer Science and Business Media LLC. - 1476-5578 .- 1359-4184. ; 26:8, s. 3884-3895
  • Journal article (peer-reviewed)abstract
    • DNA methylation, which is modulated by both genetic factors and environmental exposures, may offer a unique opportunity to discover novel biomarkers of disease-related brain phenotypes, even when measured in other tissues than brain, such as blood. A few studies of small sample sizes have revealed associations between blood DNA methylation and neuropsychopathology, however, large-scale epigenome-wide association studies (EWAS) are needed to investigate the utility of DNA methylation profiling as a peripheral marker for the brain. Here, in an analysis of eleven international cohorts, totalling 3337 individuals, we report epigenome-wide meta-analyses of blood DNA methylation with volumes of the hippocampus, thalamus and nucleus accumbens (NAcc)—three subcortical regions selected for their associations with disease and heritability and volumetric variability. Analyses of individual CpGs revealed genome-wide significant associations with hippocampal volume at two loci. No significant associations were found for analyses of thalamus and nucleus accumbens volumes. Cluster-based analyses revealed additional differentially methylated regions (DMRs) associated with hippocampal volume. DNA methylation at these loci affected expression of proximal genes involved in learning and memory, stem cell maintenance and differentiation, fatty acid metabolism and type-2 diabetes. These DNA methylation marks, their interaction with genetic variants and their impact on gene expression offer new insights into the relationship between epigenetic variation and brain structure and may provide the basis for biomarker discovery in neurodegeneration and neuropsychiatric conditions.
  •  
7.
  • Agelidis, Alex, et al. (author)
  • Disruption of innate defense responses by endoglycosidase HPSE promotes cell survival
  • 2021
  • In: JCI Insight. - : American Society For Clinical Investigation. - 2379-3708. ; 6:7
  • Journal article (peer-reviewed)abstract
    • The drive to withstand environmental stresses and defend against invasion is a universal trait extant in all forms of life. While numerous canonical signaling cascades have been characterized in detail, it remains unclear how these pathways interface to generate coordinated responses to diverse stimuli. To dissect these connections, we followed heparanase (HPSE), a protein best known for its endoglycosidic activity at the extracellular matrix but recently recognized to drive various forms of late-stage disease through unknown mechanisms. Using herpes simplex virus-1 (HSV-1) infection as a model cellular perturbation, we demonstrate that HPSE acts beyond its established enzymatic role to restrict multiple forms of cell-intrinsic defense and facilitate host cell reprogramming by the invading pathogen. We reveal that cells devoid of HPSE are innately resistant to infection and counteract viral takeover through multiple amplified defense mechanisms. With a unique grasp of the fundamental processes of transcriptional regulation and cell death, HPSE represents a potent cellular intersection with broad therapeutic potential.
  •  
8.
  • Kuppler, Jonas, et al. (author)
  • Global gradients in intraspecific variation in vegetative and floral traits are partially associated with climate and species richness
  • 2020
  • In: Global Ecology and Biogeography. - : Wiley. - 1466-822X .- 1466-8238. ; 29:6, s. 992-1007
  • Journal article (peer-reviewed)abstract
    • AimIntraspecific trait variation (ITV) within natural plant communities can be large, influencing local ecological processes and dynamics. Here, we shed light on how ITV in vegetative and floral traits responds to large‐scale abiotic and biotic gradients (i.e., climate and species richness). Specifically, we tested whether associations of ITV with temperature, precipitation and species richness were consistent with any of four hypotheses relating to stress tolerance and competition. Furthermore, we estimated the degree of correlation between ITV in vegetative and floral traits and how they vary along the gradients.LocationGlobal.Time period1975–2016.Major taxa studiedHerbaceous and woody plants.MethodsWe compiled a dataset of 18,401 measurements of the absolute extent of ITV (measured as the coefficient of variation) in nine vegetative and seven floral traits from 2,822 herbaceous and woody species at 2,372 locations.ResultsLarge‐scale associations between ITV and climate were trait specific and more prominent for vegetative traits, especially leaf morphology, than for floral traits. The ITV showed pronounced associations with climate, with lower ITV values in colder areas and higher values in drier areas. The associations of ITV with species richness were inconsistent across traits. Species‐specific associations across gradients were often idiosyncratic, and covariation in ITV was weaker between vegetative and floral traits than within the two trait groups.Main conclusionsOur results show that, depending on the traits considered, ITV either increased or decreased with climate stress and species richness, suggesting that both factors can constrain or enhance ITV, which might foster plant‐population persistence in stressful conditions. Given the species‐specific responses and covariation in ITV, associations can be hard to predict for traits and species not yet studied. We conclude that consideration of ITV can improve our understanding of how plants cope with stressful conditions and environmental change across spatial and biological scales.
  •  
9.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-9 of 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view