SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Andersen Peter M) ;pers:(Zetterström Per)"

Sökning: WFRF:(Andersen Peter M) > Zetterström Per

  • Resultat 1-10 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Bergh, Johan, 1983-, et al. (författare)
  • Structural and kinetic analysis of protein-aggregate strains in vivo using binary epitope mapping
  • 2015
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 112:14, s. 4489-4494
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite considerable progress in uncovering the molecular details of protein aggregation in vitro, the cause and mechanism of protein-aggregation disease remain poorly understood. One reason is that the amount of pathological aggregates in neural tissue is exceedingly low, precluding examination by conventional approaches. We present here a method for determination of the structure and quantity of aggregates in small tissue samples, circumventing the above problem. The method is based on binary epitope mapping using anti-peptide antibodies. We assessed the usefulness and versatility of the method in mice modeling the neurodegenerative disease amyotrophic lateral sclerosis, which accumulate intracellular aggregates of superoxide dismutase-1. Two strains of aggregates were identified with different structural architectures, molecular properties, and growth kinetics. Both were different from superoxide dismutase-1 aggregates generated in vitro under a variety of conditions. The strains, which seem kinetically under fragmentation control, are associated with different disease progressions, complying with and adding detail to the growing evidence that seeding, infectivity, and strain dependence are unifying principles of neurodegenerative disease.
  •  
3.
  • Ekhtiari Bidhendi, Elaheh, et al. (författare)
  • Mutant superoxide dismutase aggregates from human spinal cord transmit amyotrophic lateral sclerosis
  • 2018
  • Ingår i: Acta Neuropathologica. - : Springer. - 0001-6322 .- 1432-0533. ; 136:6, s. 939-953
  • Tidskriftsartikel (refereegranskat)abstract
    • Motor neurons containing aggregates of superoxide dismutase 1 (SOD1) are hallmarks of amyotrophic lateral sclerosis (ALS) caused by mutations in the gene encoding SOD1. We have previously reported that two strains of mutant human (h) SOD1 aggregates (denoted A and B) can arise in hSOD1-transgenic models for ALS and that inoculation of such aggregates into the lumbar spinal cord of mice results in rostrally spreading, templated hSOD1 aggregation and premature fatal ALS-like disease. Here, we explored whether mutant hSOD1 aggregates with prion-like properties also exist in human ALS. Aggregate seeds were prepared from spinal cords from an ALS patient carrying the hSOD1G127Gfs*7 truncation mutation and from mice transgenic for the same mutation. To separate from mono-, di- or any oligomeric hSOD1 species, the seed preparation protocol included ultracentrifugation through a density cushion. The core structure of hSOD1G127Gfs*7 aggregates present in mice was strain A-like. Inoculation of the patient- or mouse-derived seeds into lumbar spinal cord of adult hSOD1-expressing mice induced strain A aggregation propagating along the neuraxis and premature fatal ALS-like disease (p < 0.0001). Inoculation of human or murine control seeds had no effect. The potencies of the ALS patient-derived seed preparations were high and disease was initiated in the transgenic mice by levels of hSOD1G127Gfs*7 aggregates much lower than those found in the motor system of patients carrying the mutation. The results suggest that prion-like growth and spread of hSOD1 aggregation could be the primary pathogenic mechanism, not only in hSOD1 transgenic rodent models, but also in human ALS.
  •  
4.
  •  
5.
  • Ekhtiari Bidhendi, Elaheh, et al. (författare)
  • Two superoxide dismutase prion strains transmit amyotrophic lateral sclerosis-like disease
  • 2016
  • Ingår i: Journal of Clinical Investigation. - 0021-9738 .- 1558-8238. ; 126:6, s. 2249-2253
  • Tidskriftsartikel (refereegranskat)abstract
    • Amyotrophic lateral sclerosis (ALS) is an adult-onset degeneration of motor neurons that is commonly caused by mutations in the gene encoding superoxide dismutase 1 (SOD1). Both patients and Tg mice expressing mutant human SOD1 (hSOD1) develop aggregates of unknown importance. In Tg mice, 2 different strains of hSOD1 aggregates (denoted A and B) can arise; however, the role of these aggregates in disease pathogenesis has not been fully characterized. Here, minute amounts of strain A and B hSOD1 aggregate seeds that were prepared by centrifugation through a density cushion were inoculated into lumbar spinal cords of 100-day-old mice carrying a human SOD1 Tg. Mice seeded with A or B aggregates developed premature signs of ALS and became terminally ill after approximately 100 days, which is 200 days earlier than for mice that had not been inoculated or were given a control preparation. Concomitantly, exponentially growing strain A and B hSOD1 aggregations propagated rostrally throughout the spinal cord and brainstem. The phenotypes provoked by the A and B strains differed regarding progression rates, distribution, end-stage aggregate levels, and histopathology. Together, our data indicate that the aggregate strains are prions that transmit a templated, spreading aggregation of hSOD1, resulting in a fatal ALS-like disease.
  •  
6.
  •  
7.
  •  
8.
  • Graffmo, Karin S., et al. (författare)
  • Expression of wild-type human superoxide dismutase-1 in mice causes amyotrophic lateral sclerosis
  • 2013
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 22:1, s. 51-60
  • Tidskriftsartikel (refereegranskat)abstract
    • A common cause of amyotrophic lateral sclerosis (ALS) is mutations in the gene encoding superoxide dismutase-1. There is evolving circumstantial evidence that the wild-type protein can also be neurotoxic and that it may more generally be involved in the pathogenesis of ALS. To test this proposition more directly, we generated mice that express wild-type human superoxide dismutase-1 at a rate close to that of mutant superoxide dismutase-1 in the commonly studied G93A transgenic model. These mice developed an ALS-like syndrome and became terminally ill after around 370 days. The loss of spinal ventral neurons was similar to that in the G93A and other mutant superoxide dismutase-1 models, and large amounts of aggregated superoxide dismutase-1 were found in spinal cords, but also in the brain. The findings show that wild-type human superoxide dismutase-1 has the ability to cause ALS in mice, and they support the hypothesis of a more general involvement of the protein in the disease in humans.
  •  
9.
  •  
10.
  • Keskin, Isil, 1987-, et al. (författare)
  • The molecular pathogenesis of superoxide dismutase 1-linked ALS is promoted by low oxygen tension
  • 2019
  • Ingår i: Acta Neuropathologica. - New York : Springer. - 0001-6322 .- 1432-0533. ; 138:1, s. 85-101
  • Tidskriftsartikel (refereegranskat)abstract
    • Mutations in superoxide dismutase 1 (SOD1) cause amyotrophic lateral sclerosis (ALS). Disease pathogenesis is linked to destabilization, disorder and aggregation of the SOD1 protein. However, the non-genetic factors that promote disorder and the subsequent aggregation of SOD1 have not been studied. Mainly located to the reducing cytosol, mature SOD1 contains an oxidized disulfide bond that is important for its stability. Since O2 is required for formation of the bond, we reasoned that low O2 tension might be a risk factor for the pathological changes associated with ALS development. By combining biochemical approaches in an extensive range of genetically distinct patient-derived cell lines, we show that the disulfide bond is an Achilles heel of the SOD1 protein. Culture of patient-derived fibroblasts, astrocytes, and induced pluripotent stem cell-derived mixed motor neuron and astrocyte cultures (MNACs) under low oxygen tensions caused reductive bond cleavage and increases in disordered SOD1. The effects were greatest in cells derived from patients carrying ALS-linked mutations in SOD1. However, significant increases also occurred in wild-type SOD1 in cultures derived from non-disease controls, and patients carrying mutations in other common ALS-linked genes. Compared to fibroblasts, MNACs showed far greater increases in SOD1 disorder and even aggregation of mutant SOD1s, in line with the vulnerability of the motor system to SOD1-mediated neurotoxicity. Our results show for the first time that O2 tension is a principal determinant of SOD1 stability in human patient-derived cells. Furthermore, we provide a mechanism by which non-genetic risk factors for ALS, such as aging and other conditions causing reduced vascular perfusion, could promote disease initiation and progression.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 18
Typ av publikation
tidskriftsartikel (14)
annan publikation (4)
Typ av innehåll
refereegranskat (14)
övrigt vetenskapligt/konstnärligt (4)
Författare/redaktör
Marklund, Stefan L. (16)
Brännström, Thomas (13)
Andersen, Peter M. (11)
Andersen, Peter M., ... (7)
Nordström, Ulrika (6)
visa fler...
Graffmo, Karin S (6)
Forsberg, Karin (4)
Oliveberg, Mikael (3)
Gilthorpe, Jonathan ... (3)
Bergh, Johan (3)
Ekhtiari Bidhendi, E ... (3)
Keskin, Isil, 1987- (3)
Danielsson, Jens (2)
Hempel, Maja (2)
Santer, René (2)
Tsiakas, Konstantino ... (2)
Jonsson, P Andreas (2)
Bergh, Johan, 1983- (2)
Synofzik, Matthis (2)
Forsgren, Elin (2)
Lehmann, Manuela (2)
Lange, Dale J. (2)
Steinacker, Petra (1)
Otto, Markus (1)
Lang, Lisa (1)
Marklund, Stefan (1)
Volk, Alexander E. (1)
Birve, Anna (1)
Stewart, Heather G (1)
Johannsen, Jessika (1)
Bierhals, Tatjana (1)
Pakkenberg, Bente (1)
Tjust, Anton E. (1)
Bergemalm, Daniel (1)
Graffmo, Karin Sixte ... (1)
Biskup, Saskia (1)
Marklund, SL (1)
Hahn, Andreas (1)
Weishaupt, Jochen (1)
Ekhtiari Bidhendi, E ... (1)
Park, Julien H. (1)
Marklund, Matthew (1)
Marquardt, Thorsten (1)
Lang, Lisa, 1973- (1)
Bolender, Anna-Lena (1)
Bidhendi, Elaheh E., ... (1)
Elpers, Christiane (1)
Mannil, Manoj (1)
Heller, Raoul (1)
visa färre...
Lärosäte
Umeå universitet (18)
Stockholms universitet (3)
Språk
Engelska (17)
Svenska (1)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (13)
Naturvetenskap (3)
Lantbruksvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy