SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Andrén O) ;hsvcat:2"

Sökning: WFRF:(Andrén O) > Teknik

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Erneman, J., et al. (författare)
  • Precipitation reactions caused by nitrogen uptake during service at high temperatures of a niobium stabilised austenitic steel
  • 2004
  • Ingår i: Acta Materialia. - : Elsevier BV. - 1359-6454 .- 1873-2453. ; 52:14, s. 4337-4350
  • Tidskriftsartikel (refereegranskat)abstract
    • Precipitation phenomena in type 347 austenitic stainless steels have been investigated after long-term heat treatment and creep in air at 700 and 800 degreesC. Nitrogen uptake was observed during long-term creep testing at 800 degreesC. No such effect was observed at 700 degreesC although times up to about 70,000 h were used. The major phases precipitated after long time exposure at 800 degreesC were primary Nb(C,N), Z-phase, Cr2N and M23C6, while primary Nb(C,N), secondary Nb(C,N) and sigma-phase were the major phases at 700 degreesC. Z-phase precipitated in both intragranular and intergranular form at 800 degreesC. Large precipitates exhibiting a core/rim structure showed a rim of Z-phase surrounding undissolved primary Nb(C,N). The microstructural evolution during creep deformation in air at 800 degreesC was modelled thermodynamically. The model satisfactorily predicts nitrogen uptake and the essential features of the evolution of the microstructure with time. The precipitation sequence could be qualitatively described, although it was not possible to model the formation of all precipitates.
  •  
2.
  • Erneman, J., et al. (författare)
  • Comparison between quantitative metallography and modeling of sigma-phase particle growth in AISI 347 stainless steel
  • 2005
  • Ingår i: Metallurgical and Materials Transactions. A. - : Springer Science and Business Media LLC. - 1073-5623 .- 1543-1940. ; 36A:10, s. 2595-2600
  • Tidskriftsartikel (refereegranskat)abstract
    • A comparison was made between two experimental methods to determine the (T-phase volume fraction and three methods to model a-phase growth in a niobium-stabilized stainless steel (AISI 347). The a-phase volume fraction and precipitate size were determined in material statically aged and creep deformed at 700 degrees C with both KOH etched specimens using bright field optical microscopy (OM/BF) (conventional method) and specimens etched with oxalic acid using scanning electron microscopy and backscattered electrons (SEM/BSE) (new method). Both experimental methods used manual thresholding together with digital image analysis. The calculations were made with DICTRA software, using both the TCFE database and the SSOL database with some modification concerning the effect of silicon on the stability of sigma-phase particles. The modeled sigma-phase volume- fractions showed rather good agreement with the measured results from statically aged material using the new method. It was found that the stabilizing effect of silicon on sigma phase should be included in the thermodynamic database used for modeling.
  •  
3.
  • Shoja, Siamak, 1980, et al. (författare)
  • Calculated and experimental Schmid factors for chip flow deformation of textured CVD α-alumina coatings
  • 2021
  • Ingår i: Surface and Coatings Technology. - : Elsevier BV. - 0257-8972. ; 412
  • Tidskriftsartikel (refereegranskat)abstract
    • A thorough analysis of Schmid factors (m) for three different (basal and two prismatic) slip systems and three different coating textures, (0001), (011¯2) and (112¯0), was done in order to understand the influence of CVD α-alumina coating textures on the ability of the coatings to deform plastically at different locations on the rake face of a cutting tool insert during a metal machining operation. Schmid factor diagrams were constructed using MATLAB/MTEX in order to visualize the angular dependence of an external force relative to the α-Al O crystals (grains) on the Schmid factor. The diagrams were also used to extract m-value frequency distributions for different slip systems and textures. In addition, lateral m-value distribution maps were obtained from experimental textured coatings using electron backscatter diffraction. These maps show the ability for neighboring grains to deform plastically in the coatings. Cutting tool inserts with differently textured α-Al2O3 coatings were subjected to dry machining of a quench-tempered steel. Using scanning electron microscopy, the microstructure and surface topography of the worn alumina layers were investigated and it was found that a flatter surface morphology and higher probability of discrete plastic deformation are connected to less wear. This was observed in the (0001)-textured sample, which also exhibited the highest m-values in the wear zone with highest temperatures and external forces. It was observed that basal slip is most easily activated, followed by prismatic slip systems 1 and 2 in this case. For (011¯2) and (112¯0) textured coatings the differences in m-values for the three slip systems are not that big, and the distributions are relatively wide. It is clear that the Schmid factor analysis forms a basis that is important for understanding crater wear, especially when it is connected to local plastic deformation, of textured CVD α-Al2O3 coatings. The methodology of this work can be expanded to other coating systems and also more generally to applications where it is of interest to analyze the deformation behavior and local plastic anisotropy of textured materials.
  •  
4.
  • Andrén, Anna, 1970- (författare)
  • Freezing Temperature Flows in Railway Tunnels and its Consequence on the Rock Supporting Structure, the Rock and the Reinforcing Elements
  • 2023
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Water in the surrounding rock mass flows into the tunnel via naturally occurring joints and via cracks caused by the blasting used to excavate the tunnel. The most common method in Sweden to reduce or prevent leakage problems are first and foremost the use of grouting. However, experience shows that despite extensive pre-grouting and supplementary post-grouting, it is difficult to seal the rock mass so that drips and moisture are completely eliminated. Although the water itself causes degradation of the tunnel, the degradation process increases dramatically when the water is exposed to freezing temperatures. Water expands during freezing and due to water migration, which occurs in rock in a similar way as in soil, the ice causes frost shattering of the interface between rock and shotcrete and also to the shotcrete and the rock itself. This can damage the main load-bearing system. The ice formation itself is a maintenance problem, as the tunnels must be kept clear of icicles, ice pillars and ice layers in the tracks or on the roads. One of the main tasks in this research project has been to identify which problems cause the most maintenance work and where and when these problems occur in the tunnel.During the field observations carried out as part of this doctoral study, many problems with water and ice were discovered, all of which contribute to increased maintenance. Many ice problems are directly linked to frost insulated drain mats. Leakage and ice formations occur at the edge of the drains, in mat splices and when brackets for cable racks, handrails or other installations puncture a drain and it has not been properly sealed. In drains covered with shotcrete, frost shattering and cracking in the shotcrete can be a problem. Frost cycles in the tunnel cause the water to freeze and thaw alternately, allowing more water to reach the freezing area due to water migration, resulting in frost shattering of the rock and the shotcrete. If not anchored with bolts, the reinforcing effect and the stability of shotcrete in a tunnel is dependent on the adhesion to the rock surface. It is, therefore, important to take all available measures to ensure good adhesion. Poor adhesion in itself is not a degradation problem, but a void can form in the interface between rock and shotcrete as a result of poor adhesion. If this void is filled with water that cannot drain away, ice pressure can occur in the layer between rock and shotcrete. The ice pressure can cause cracking and degradation of the shotcrete if the pressure exceeds the tensile strength of the adjacent material. In some of the reported fall-outs of rock and shotcrete, an ice layer was discovered between the rock surface and the edges of the remaining shotcrete layer. Therefore, frost shattering is a likely cause of the fall-outs. Many frost cycles combined with water leakage can cause frost shattering. The field measurements conducted as a part of the doctoral study have shown that most frost cycles do not occur closest to the tunnel entrances, but instead about 100 to 200 m into the longer tunnels. The results from the laboratory tests performed as part of the doctoral study showed that the adhesive strength between rock and shotcrete decreased significantly when the test panels were subjected to freeze-thaw cycles. Furthermore, more of the micro seismic events (AE - acoustic emission monitoring) occurred in the test panels that had access to water during freezing. Therefor, maintenance personnel and inspectors should pay particular attention to water leakage in sections that have an increased number of frost cycles, to avoid future problems with frost shattering of rock or shotcrete. In the longer tunnels studied in this work, a greater number of ice formations occurred in the inner parts of the tunnel, than close to the entrances. The rock mass emits heat, which heats up the cold outside air that enters the tunnel. Due to the heat transfer from the rock mass, leakage points located further along the tunnels can remain unfrozen. A leak that is closer to the tunnel entrances in the longer tunnels or a leak in a shorter tunnel are exposed to higher freezing rates. The entire rock mass freezes and the leak ‘freezes dry’, that is, ice forms in the water-bearing fracture, preventing further water leakage.Where and when ice problems occur along a tunnel depends on many factors. Besides the obvious water leakage, the length of frost penetration into the tunnel is the main reason for where and when ice problems occur. The predominant cause of frost penetration in most of the tunnels is the thermally induced airflow. In the longer tunnels, the inclination of the tunnel affects frost penetration the most. The field observations showed that there was a difference in where and when leakage points appear during the year and also in terms of variation in the amount of leakage water. There was also a variation over different years. The conclusions of the field observations are that it is difficult to estimate where the insulated drain mats should be located along a tunnel. Based on experience from this survey, the location of the drains should be determined only after several inspections and especially after a winter period, when the main problems with ice formation occur. Previous perception regarding ice problems have been that ice formation only occurs at the tunnel entrances and in the outer parts of the tunnel. A proposed measure has, therefore, been to cover the first 300 m from each entrance with frost insulated drains to try to completely eliminate the ice problems. However, this is not an effective solution to the problem. The insulation not only prevents the cold from reaching the leakage point, but it also prevents the rock mass from emitting heat that warms up the cold outside air entering the tunnel. Thus, the frost can penetrate further into the tunnel and the problems with ice formation are only moved further into the tunnel. As the amount and location of the frost insulation affects frost penetration, the dimensioning of insulation must, therefore, be carried out in several iterations, where each new distribution of insulation along the tunnel is calculated separately.For the tunnels that have been studied as part of this doctoral study, the following has emerged. The central and southern parts of Sweden have shorter cooling periods and the tunnels are exposed to many temperature fluctuations around 0°C during the winter. The frost does not have time to penetrate as far here as in the tunnels in the northern parts of Sweden. Therefore, more ice problems arise around the entrances of the tunnels in the southern parts of Sweden than for those in the northern parts. For northern parts of Sweden, the problem of growing ice formations in sections near the tunnel entrance usually occurs only during the autumn and spring, but not in winter. The field observations showed that the problems with ice growth and temperature fluctuations around 0°C occur further along the longer tunnels in the northern parts of Sweden. This is because the temperature of the tunnel air is higher due to heat transfer from the rock mass. For shorter tunnels that adopt the same temperatures as the outside air, ice formations can occur along the entire length of the tunnel in the sections that have leakage problems. The Swedish Transport Administration’s regulations are currently being updated and the observations and measurements carried out in this doctoral work are now being used to evaluate new requirements regarding frost penetration in tunnels.
  •  
5.
  • Gregersen, V R, et al. (författare)
  • Bovine chromosomal regions affecting rheological traits in rennet-induced skim milk gels.
  • 2015
  • Ingår i: Journal of Dairy Science. - : American Dairy Science Association. - 1525-3198 .- 0022-0302. ; 98:2, s. 1261-1272
  • Tidskriftsartikel (refereegranskat)abstract
    • Optimizing cheese yield and quality is of central importance to cheese manufacturing. The yield is associated with the time it takes before the gel has an optimal consistency for further processing, and it is well known that gel formation differs between individual milk samples. By identifying genomic regions affecting traits related to rennet-induced gelation, the aim of this study was to identify potential candidate genes affecting these traits. Hence, rennet-induced gelation, including rennet coagulation time, gel strength, and yield stress, was measured in skim milk samples collected from 379 animals of the Swedish Red breed using low-amplitude oscillation measurements. All animals had genotypes for almost 621,000 segregating single nucleotide polymorphisms (SNP), identified using the Bovine HD SNPChip (Illumina Inc., San Diego, CA). The genome was scanned for associations, haplotypes based on SNP sets comprising highly associated SNP were inferred, and the effects of the 2 most common haplotypes within each region were analyzed using mixed models. Even though the number of animals was relatively small, a total of 21 regions were identified, with 4 regions showing association with more than one trait. A major quantitative trait locus for all traits was identified around the casein cluster explaining between 9.3 to 15.2% of the phenotypic variation of the different traits. In addition, 3 other possible candidate genes were identified; that is, UDP-n-acetyl-α-d-galactosamine:polypeptide n-acetylgalactosaminyl-transferase 1 (GALNT1), playing a role in O-glycosylation of κ-casein, and 2 cathepsins, CTSZ and CTSC, possibly involved in proteolysis of milk proteins. We have shown that other genes than the casein genes themselves may be involved in the regulation of gelation traits. However, additional analysis is needed to confirm these results. To our knowledge, this is the first study identifying quantitative trait loci affecting rennet-induced gelation of skim milk through a high-density genome-wide association study.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy