SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Andrén Per E.) ;hsvcat:1"

Sökning: WFRF:(Andrén Per E.) > Naturvetenskap

  • Resultat 1-10 av 43
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Nilsson, C. L., et al. (författare)
  • Use of ENCODE Resources to Characterize Novel Proteoforms and Missing Proteins in the Human Proteome
  • 2015
  • Ingår i: Journal of Proteome Research. - : American Chemical Society (ACS). - 1535-3893 .- 1535-3907. ; 14:2, s. 603-608
  • Tidskriftsartikel (refereegranskat)abstract
    • We describe the utility of integrated strategies that employ both translation of ENCODE data and major proteomic technology pillars to improve the identification of the "missing proteins", novel proteoforms, and PTMs. On one hand, databases in combination with bioinformatic tools are efficiently utilized to establish microarray-based transcript analysis and supply rapid protein identifications in clinical samples. On the other hand, sequence libraries are the foundation of targeted protein identification and quantification using mass spectrometric and immunoaffinity techniques. The results from combining proteoENCODEdb searches with experimental mass spectral data indicate that some alternative splicing forms detected at the transcript level are in fact translated to proteins. Our results provide a step toward the directives of the C-HPP initiative and related biomedical research.
  •  
2.
  • Shariatgorji, Mohammadreza, et al. (författare)
  • Controlled-pH Tissue Cleanup Protocol for Signal Enhancement of Small Molecule Drugs Analyzed by MALDI-MS Imaging
  • 2012
  • Ingår i: Analytical Chemistry. - : American Chemical Society (ACS). - 1520-6882 .- 0003-2700. ; 84:10, s. 4603-4607
  • Tidskriftsartikel (refereegranskat)abstract
    • The limit of detection of low-molecular weight compounds in tissue sections, analyzed by matrix assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI), was significantly improved by employing sample washing using a pH-controlled buffer solution. The pH of the washing solutions were set at values whereby the target analytes would have low solubility. Washing the tissue sections in the buffered solution resulted in removal of endogenous soluble ionization-suppressing compounds and salts, while the target compound remained in situ with minor or no delocalization during the buffered washing procedure. Two pharmaceutical compounds (cimetidine and imipramine) and one new protease inhibitor compound were successfully used to evaluate the feasibility of the pH-controlled tissue washing protocol for MALDI-MSI. Enhancement in signal-to-noise ratio was achieved by a factor of up to 10.
  •  
3.
  • Kaya, Ibrahim, et al. (författare)
  • On-Tissue Chemical Derivatization for Comprehensive Mapping of Brain Carboxyl and Aldehyde Metabolites by MALDI-MS Imaging
  • 2023
  • Ingår i: Journal of the American Society for Mass Spectrometry. - : American Chemical Society (ACS). - 1044-0305 .- 1879-1123. ; 34:5, s. 836-846
  • Tidskriftsartikel (refereegranskat)abstract
    • The visualization of small metabolites by MALDI mass spectrometry imaging in brain tissue sections is challenging due to low detection sensitivity and high background interference. We present an on-tissue chemical derivatization MALDI mass spectrometry imaging approach for the comprehensive mapping of carboxyls and aldehydes in brain tissue sections. In this approach, the AMPP (1-(4-(aminomethyl)phenyl)pyridin-1-ium chloride) derivatization reagent is used for the covalent charge-tagging of molecules containing carboxylic acid (in the presence of peptide coupling reagents) and aldehydes. This includes free fatty acids and the associated metabolites, fatty aldehydes, dipeptides, neurotoxic reactive aldehydes, amino acids, neurotransmitters and associated metabolites, as well as tricarboxylic acid cycle metabolites. We performed sensitive ultrahigh mass resolution MALDI-MS detection and imaging of various carboxyl-and aldehyde containing endogenous metabolites simultaneously in rodent brain tissue sections. We verified the AMPP-derivatized metabolites by tandem MS for structural elucidation. This approach allowed us to image numerous aldehydes and carboxyls, including certain metabolites which had been undetectable in brain tissue sections. We also demonstrated the application of on-tissue derivatization to carboxyls and aldehydes in coronal brain tissue sections of a nonhuman primate Parkinson's disease model. Our methodology provides a powerful tool for the sensitive, simultaneous spatial molecular imaging of numerous aldehydes and carboxylic acids during pathological states, including neurodegeneration, in brain tissue.
  •  
4.
  • Nilsson, C. L., et al. (författare)
  • Chromosome 19 Annotations with Disease Speciation: A First Report from the Global Research Consortium
  • 2013
  • Ingår i: Journal of Proteome Research. - : American Chemical Society (ACS). - 1535-3893 .- 1535-3907. ; 12:1, s. 134-149
  • Tidskriftsartikel (refereegranskat)abstract
    • A first research development progress report of the Chromosome 19 Consortium with members from Sweden, Norway, Spain, United States, China and India, a part of the Chromosome-centric Human Proteome Project (C-HPP) global initiative, is presented (http://www.c-hpp.org). From the chromosome 19 peptide-targeted library constituting 6159 peptides, a pilot study was conducted using a subset with 125 isotope-labeled peptides. We applied an annotation strategy with triple quadrupole, ESI-Qtrap, and MALDI mass spectrometry platforms, comparing the quality of data within and in between these instrumental set-ups. LC–MS conditions were outlined by multiplex assay developments, followed by MRM assay developments. SRM was applied to biobank samples, quantifying kallikrein 3 (prostate specific antigen) in plasma from prostate cancer patients. The antibody production has been initiated for more than 1200 genes from the entire chromosome 19, and the progress developments are presented. We developed a dedicated transcript microarray to serve as the mRNA identifier by screening cancer cell lines. NAPPA protein arrays were built to align with the transcript data with the Chromosome 19 NAPPA chip, dedicated to 90 proteins, as the first development delivery. We have introduced an IT-infrastructure utilizing a LIMS system that serves as the key interface for the research teams to share and explore data generated within the project. The cross-site data repository will form the basis for sample processing, including biological samples as well as patient samples from national Biobanks.
  •  
5.
  • Dahlin, Andreas P., et al. (författare)
  • Poly(dimethylsiloxane)-Based Microchip for Two-Dimensional Solid-Phase Extraction-Capillary Electrophoresis with an Integrated Electrospray Emitter Tip
  • 2005
  • Ingår i: Analytical Chemistry. - : American Chemical Society (ACS). - 0003-2700 .- 1520-6882. ; 77:16, s. 5356-5363
  • Tidskriftsartikel (refereegranskat)abstract
    • A microchip in poly(dimethylsiloxane) (PDMS) for in-line solid-phase extraction-capillary electrophoresis-electrospray ionization-time-of-flight mass spectrometry (SPE-CE-ESI-TOF-MS) has been developed and evaluated. The chip was fabricated in a novel one-step procedure where mixed PDMS was cast over steel wires in a mold. The removed wires defined 50-um cylindrical channels. Fused-silica capillaries were inserted into the structure in a tight fit connection. The inner walls of the inserted fused-silica capillaries and the PDMS microchip channels were modified with a positively charged polymer, PolyE-323. The chip was fabricated in a two-level cross design. The channel at the lower level was packed with 5-um hyper-cross-linked polystyrene beads acting as a SPE medium used for desalting. The upper level channel acted as a CE channel and ended in an integrated emitter tip coated with conducting graphite powder to facilitate the electrical contact for sheathless ESI. An overpressure continuously provided fresh CE electrolyte independently of the flows in the different levels. Further studies were carried out in order to investigate the electrophoretic and flow rate properties of the chip. Finally, six-peptide mixtures, in different concentrations, dissolved in physiological salt solution was injected, desalted, separated, and sprayed into the mass spectrometer for analysis with a limit of detection in femtomole levels.
  •  
6.
  • Shariatgorji, Mohammadreza, et al. (författare)
  • Deuterated Matrix-Assisted Laser Desorption Ionization Matrix Uncovers Masked Mass Spectrometry Imaging Signals of Small Molecules
  • 2012
  • Ingår i: Analytical Chemistry. - : American Chemical Society (ACS). - 0003-2700 .- 1520-6882. ; 84:16, s. 7152-7157
  • Tidskriftsartikel (refereegranskat)abstract
    • D-4-alpha-Cyano-4-hydroxycinnamic acid (D-4-CHCA) has been synthesized for use as a matrix for matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS) and MALDI-MS imaging (MSI) of small molecule drugs and endogenous compounds. MALDI-MS analysis of small molecules has historically been hindered by interference from matrix ion clusters and fragment peaks that mask signals of low molecular weight compounds of interest. By using D-4-CHCA, the cluster and fragment peaks of CHCA, the most common matrix for analysis of small molecules, are shifted by + 4, + 8 and + 12 Da, which expose signals across areas of the previously concealed low mass range. Here, obscured MALDI-MS signals of a synthetic small molecule pharmaceutical, a naturally occurring isoquinoline alkaloid, and endogenous compounds including the neurotransmitter acetylcholine have been unmasked and imaged directly from biological tissue sections.
  •  
7.
  • Fridjonsdottir, Elva, et al. (författare)
  • Mass spectrometry imaging reveals brain-region specific changes in metabolism and acetylcholine levels in experimental Parkinson’s disease and L-DOPA-induced dyskinesia
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • There is evidence that cholinergic alterations are linked to various motor and non-motor symptoms of Parkinson’s disease. We therefore used mass spectrometry imaging to investigate regional changes in acetylcholine abundance in the brain of a non-human primate model of Parkinson’s disease (PD) and L-DOPA-induced dyskinesia (LID). We also present an experimental design for performing untargeted analysis using MALDI-MSI with multiple experiments incorporating quality control samples to monitor experimental variability. We observed that MPTP treatment (i) led to reductions in putaminal acetylcholine levels that persisted after L-DOPA treatment and (ii) appeared to induce a shift of choline metabolism from α-glycerophosphocholine towards betaine. LID animals exhibited reduced levels of various metabolites important for brain homeostasis including S-adenosylmethionine, glutathione, adenosine monophosphate, and acylcarnitines. The vasculature marker heme B was upregulated in the putamen of LID animals, suggesting increased blood-flow in the dyskinetic putamen. These results provide new insights into pathological choline-related metabolic changes in PD and LID.  
  •  
8.
  • Kaya, Ibrahim, et al. (författare)
  • Spatial lipidomics reveals brain region-specific changes of sulfatides in an experimental MPTP Parkinson's disease primate model
  • 2023
  • Ingår i: npj Parkinson's Disease. - : Springer Nature. - 2373-8057. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Metabolism of MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) to the neurotoxin MPP+ in the brain causes permanent Parkinson's disease-like symptoms by destroying dopaminergic neurons in the pars compacta of the substantia nigra in humans and non-human primates. However, the complete molecular pathology underlying MPTP-induced parkinsonism remains poorly understood. We used dual polarity matrix-assisted laser desorption/ionization mass spectrometry imaging to thoroughly image numerous glycerophospholipids and sphingolipids in coronal brain tissue sections of MPTP-lesioned and control non-human primate brains (Macaca mulatta). The results revealed specific distributions of several sulfatide lipid molecules based on chain-length, number of double bonds, and importantly, hydroxylation stage. More specifically, certain long-chain hydroxylated sulfatides with polyunsaturated chains in the molecular structure were depleted within motor-related brain regions in the MPTP-lesioned animals, e.g., external and internal segments of globus pallidus and substantia nigra pars reticulata. In contrast, certain long-chain non-hydroxylated sulfatides were found to be elevated within the same brain regions. These findings demonstrate region-specific dysregulation of sulfatide metabolism within the MPTP-lesioned macaque brain. The depletion of long-chain hydroxylated sulfatides in the MPTP-induced pathology indicates oxidative stress and oligodendrocyte/myelin damage within the pathologically relevant brain regions. Hence, the presented findings improve our current understanding of the molecular pathology of MPTP-induced parkinsonism within primate brains, and provide a basis for further research regarding the role of dysregulated sulfatide metabolism in PD.
  •  
9.
  • Källback, Patrik, et al. (författare)
  • Cross-validated Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging Quantitation Protocol for a Pharmaceutical Drug and Its Drug-Target Effects in the Brain Using Time-of-Flight and Fourier Transform Ion Cyclotron Resonance Analyzers
  • 2020
  • Ingår i: Analytical Chemistry. - : American Chemical Society (ACS). - 0003-2700 .- 1520-6882. ; 92:21, s. 14676-14684
  • Tidskriftsartikel (refereegranskat)abstract
    • Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) is an established tool in drug development, which enables visualization of drugs and drug metabolites at spatial localizations in tissue sections from different organs. However, robust and accurate quantitation by MALDI-MSI still remains a challenge. We present a quantitative MALDI-MSI method using two instruments with different types of mass analyzers, i.e., time-of-flight (TOF) and Fourier transform ion cyclotron resonance (FTICR) MS, for mapping levels of the in vivo-administered drug citalopram, a selective serotonin reuptake inhibitor, in mouse brain tissue sections. Six different methods for applying calibration standards and an internal standard were evaluated. The optimized method was validated according to authorities' guidelines and requirements, including selectivity, accuracy, precision, recovery, calibration curve, sensitivity, reproducibility, and stability parameters. We showed that applying a dilution series of calibration standards followed by a homogeneously applied, stable, isotopically labeled standard for normalization and a matrix on top of the tissue section yielded similar results to those from the reference method using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The validation results were within specified limits and the brain concentrations for TOF MS (51.1 +/- 4.4 pmol/mg) and FTICR MS (56.9 +/- 6.0 pmol/mg) did not significantly differ from those of the cross-validated LC-MS/MS method (55.0 +/- 4.9 pmol/mg). The effect of in vivo citalopram administration on the serotonin neurotransmitter system was studied in the hippocampus, a brain region that is the principal target of the serotonergic afferents along with the limbic system, and it was shown that serotonin was significantly increased (2-fold), but its metabolite 5-hydroxyindoleacetic acid was not. This study makes a substantial step toward establishing MALDI-MSI as a fully quantitative validated method.
  •  
10.
  • Shariatgorji, Mohammadreza, et al. (författare)
  • Bromopyrylium Derivatization Facilitates Identification by Mass Spectrometry Imaging of Monoamine Neurotransmitters and Small Molecule Neuroactive Compounds
  • 2020
  • Ingår i: Journal of the American Society for Mass Spectrometry. - : AMER CHEMICAL SOC. - 1044-0305 .- 1879-1123. ; 31:12, s. 2553-2557
  • Tidskriftsartikel (refereegranskat)abstract
    • Mass spectrometry imaging using matrix-assisted laser desorption/ionization and desorption electrospray ionization has recently been employed to investigate the distribution of neurotransmitters, including biogenic amines and amino acids, directly in brain tissue sections. Ionization is facilitated by charge-tagging through pyrylium derivatization of primary amine containing neurotransmitters directly in tissue sections, significantly improving the limit of detection. Since the derivatization adds carbon and hydrogen to the target compounds, the resulting isotopic patterns of the products are not distinctive from those of the nonderivatized species. Here, we describe an approach for chemically modifying the reactive pyrylium ion to introduce the distinct isotopic signature of bromine in mass spectra of chemically derivatized substances in tissue sections. The method enables monoamine compounds to be distinguished directly in tissue sections, facilitating their identification.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 43
Typ av publikation
tidskriftsartikel (38)
annan publikation (3)
doktorsavhandling (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (38)
övrigt vetenskapligt/konstnärligt (5)
Författare/redaktör
Andrén, Per E. (22)
Nilsson, Anna (22)
Andrén, Per E., Prof ... (20)
Svenningsson, Per (11)
Shariatgorji, Mohamm ... (10)
Vallianatou, Theodos ... (8)
visa fler...
Goodwin, Richard J. ... (8)
Shariatgorji, Reza (8)
Jansson, Erik T., Do ... (7)
Göransson, Ulf, 1970 ... (6)
Bézard, Erwan (5)
Slazak, Blazej (5)
Aerts, Jordan (4)
Zhang, Xiaoqun (4)
Strittmatter, Nicole (4)
Fridjonsdottir, Elva (4)
Odell, Luke R (3)
Vegvari, Akos (3)
Bergquist, Jonas (3)
Hober, Sophia (3)
Marko-Varga, György (3)
Swales, John G. (3)
Kaya, Ibrahim (3)
Fehniger, Thomas (3)
Carlsohn, Elisabet (3)
Nilsson, C L (3)
Sandbaumhüter, Fried ... (3)
Schintu, Nicoletta (3)
Bjärterot, Patrik (3)
Källback, Patrik (3)
Fuentes, M. (3)
Kultima, Kim (2)
Laurell, Thomas (2)
Aerts, Jordan T. (2)
Sweedler, Jonathan V ... (2)
Malm, Johan (2)
Welinder, Charlotte (2)
Alm, Henrik (2)
Scholz, Birger (2)
Dencker, Lennart (2)
Markides, Karin E. (2)
Rezeli, Melinda (2)
Lindberg, Henrik (2)
Bergström, Sara K. (2)
Fenyo, D (2)
Kapusta, Malgorzata (2)
Shariatgorji, R (2)
Mantas, Ioannis (2)
Jansson, Erik T. (2)
Sjödin, Karin (2)
visa färre...
Lärosäte
Uppsala universitet (42)
Karolinska Institutet (10)
Kungliga Tekniska Högskolan (4)
Lunds universitet (4)
Göteborgs universitet (3)
Stockholms universitet (2)
visa fler...
Linnéuniversitetet (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (43)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (14)
Teknik (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy