SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Andrén Per E.) ;pers:(Gustavsson Lena)"

Sökning: WFRF:(Andrén Per E.) > Gustavsson Lena

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Nilsson, Anna, et al. (författare)
  • Fine Mapping the Spatial Distribution and Concentration of Unlabeled Drugs within Tissue Micro-Compartments Using Imaging Mass Spectrometry
  • 2010
  • Ingår i: PloS one. - : Public Library of Science (PLoS). - 1932-6203. ; 5:7, s. e11411-
  • Tidskriftsartikel (refereegranskat)abstract
    • Readouts that define the physiological distributions of drugs in tissues are an unmet challenge and at best imprecise, but are needed in order to understand both the pharmacokinetic and pharmacodynamic properties associated with efficacy. Here we demonstrate that it is feasible to follow the in vivo transport of unlabeled drugs within specific organ and tissue compartments on a platform that applies MALDI imaging mass spectrometry to tissue sections characterized with high definition histology. We have tracked and quantified the distribution of an inhaled reference compound, tiotropium, within the lungs of dosed rats, using systematic point by point MS and MS/MS sampling at 200 mu m intervals. By comparing drug ion distribution patterns in adjacent tissue sections, we observed that within 15 min following exposure, tiotropium parent MS ions (mass-to-charge; m/z 392.1) and fragmented daughter MS/MS ions (m/z 170.1 and 152.1) were dispersed in a concentration gradient (80 fmol-5 pmol) away from the central airways into the lung parenchyma and pleura. These drug levels agreed well with amounts detected in lung compartments by chemical extraction. Moreover, the simultaneous global definition of molecular ion signatures localized within 2-D tissue space provides accurate assignment of ion identities within histological landmarks, providing context to dynamic biological processes occurring at sites of drug presence. Our results highlight an important emerging technology allowing specific high resolution identification of unlabeled drugs at sites of in vivo uptake and retention.
  •  
2.
  • Shariatgorji, Mohammadreza, et al. (författare)
  • Controlled-pH Tissue Cleanup Protocol for Signal Enhancement of Small Molecule Drugs Analyzed by MALDI-MS Imaging
  • 2012
  • Ingår i: Analytical Chemistry. - : American Chemical Society (ACS). - 1520-6882 .- 0003-2700. ; 84:10, s. 4603-4607
  • Tidskriftsartikel (refereegranskat)abstract
    • The limit of detection of low-molecular weight compounds in tissue sections, analyzed by matrix assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI), was significantly improved by employing sample washing using a pH-controlled buffer solution. The pH of the washing solutions were set at values whereby the target analytes would have low solubility. Washing the tissue sections in the buffered solution resulted in removal of endogenous soluble ionization-suppressing compounds and salts, while the target compound remained in situ with minor or no delocalization during the buffered washing procedure. Two pharmaceutical compounds (cimetidine and imipramine) and one new protease inhibitor compound were successfully used to evaluate the feasibility of the pH-controlled tissue washing protocol for MALDI-MSI. Enhancement in signal-to-noise ratio was achieved by a factor of up to 10.
  •  
3.
  • Végvári, Ákos, et al. (författare)
  • Essential tactics of tissue preparation and matrix nano-spotting for successful compound imaging mass spectrometry
  • 2010
  • Ingår i: Journal of Proteomics. - : Elsevier BV. - 1876-7737 .- 1874-3919. ; 73:6, s. 1270-1278
  • Tidskriftsartikel (refereegranskat)abstract
    • The ultimate goal of MALDI-Imaging Mass Spectrometry (MALDI-IMS) is to achieve spatial localization of analytes in tissue sections down to individual tissue compartments or even at the level of a few cells. With compound tissue imaging, it is possible to track the transportation of an unlabelled, inhaled reference compound within lung tissue, through the application of MALDI-IMS. The procedure for isolation and preparation of lung tissues is found to be crucial in order to preserve the anatomy and structure of the pulmonary compartments. To avoid delocalization of analytes within lung tissue compartments we have applied an in-house designed nano-spotter, based on a microdispenser mounted on an XY table, of which movement and spotting functionality were fully computer controlled. We demonstrate the usefulness of this platform in lung tissue sections isolated from rodent in vivo model, applied to compound tissue imaging as exemplified with the determination of the spatial distribution of (1 alpha,2 beta,4 beta,7 beta)-7-[(hydroxidi-2-thienylacetyl)oxy]-9,9-dimethyl-3-oxa-9-azoniatric yclo[3.3.1.0(2,4)]nonane, also known as tiotropium. We provide details on tissue preparation protocols and sample spotting technology for successful identification of drug in mouse lung tissue by using MALDI-Orbitrap instrumentation.
  •  
4.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy