SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Andreasson Ulf 1968) ;pers:(Gustavsson Mikael K)"

Sökning: WFRF:(Andreasson Ulf 1968) > Gustavsson Mikael K

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Mattsson, Niklas, 1979, et al. (författare)
  • BACE1 inhibition induces a specific cerebrospinal fluid β-amyloid pattern that identifies drug effects in the central nervous system.
  • 2012
  • Ingår i: PloS one. - : Public Library of Science (PLoS). - 1932-6203. ; 7:2
  • Tidskriftsartikel (refereegranskat)abstract
    • BACE1 is a key enzyme for amyloid-β (Aβ) production, and an attractive therapeutic target in Alzheimer's disease (AD). Here we report that BACE1 inhibitors have distinct effects on neuronal Aβ metabolism, inducing a unique pattern of secreted Aβ peptides, analyzed in cell media from amyloid precursor protein (APP) transfected cells and in cerebrospinal fluid (CSF) from dogs by immunoprecipitation-mass spectrometry, using several different BACE1 inhibitors. Besides the expected reductions in Aβ1-40 and Aβ1-42, treatment also changed the relative levels of several other Aβ isoforms. In particular Aβ1-34 decreased, while Aβ5-40 increased, and these changes were more sensitive to BACE1 inhibition than the changes in Aβ1-40 and Aβ1-42. The effects on Aβ5-40 indicate the presence of a BACE1 independent pathway of APP degradation. The described CSF Aβ pattern may be used as a pharmacodynamic fingerprint to detect biochemical effects of BACE1-therapies in clinical trials, which might accelerate development of novel therapies.
  •  
2.
  • Augutis, Kristin, et al. (författare)
  • Cerebrospinal fluid biomarkers of β-amyloid metabolism in multiple sclerosis.
  • 2013
  • Ingår i: Multiple sclerosis (Houndmills, Basingstoke, England). - : SAGE Publications. - 1477-0970 .- 1352-4585. ; 19:5, s. 543-52
  • Tidskriftsartikel (refereegranskat)abstract
    • Amyloid precursor protein (APP) and amyloid β (Aβ) peptides are intensely studied in neuroscience and their cerebrospinal fluid (CSF) measurements may be used to track the metabolic pathways of APP in vivo. Reduced CSF levels of Aβ and soluble APP (sAPP) fragments are reported in inflammatory diseases, including multiple sclerosis (MS); but in MS, the precise pathway of APP metabolism and whether it can be affected by disease-modifying treatments remains unclear.
  •  
3.
  • Mattsson, Niklas, 1979, et al. (författare)
  • Amyloid-β metabolism in Niemann-Pick C disease models and patients.
  • 2012
  • Ingår i: Metabolic brain disease. - : Springer Science and Business Media LLC. - 1573-7365 .- 0885-7490. ; 27:4, s. 573-85
  • Tidskriftsartikel (refereegranskat)abstract
    • Niemann-Pick type C (NPC) is a progressive neurodegenerative lysosomal disease with altered cellular lipid trafficking. The metabolism of amyloid-β (Aβ) - previously mainly studied in Alzheimer's disease - has been suggested to be altered in NPC. Here we aimed to perform a detailed characterization of metabolic products from the amyloid precursor protein (APP) in NPC models and patients. We used multiple analytical technologies, including immunoassays and immunoprecipitation followed by mass spectrometry (IP-MS) to characterize Aβ peptides and soluble APP fragments (sAPP-α/β) in cell media from pharmacologically (U18666A) and genetically (NPC1 ( -/- ) ) induced NPC cell models, and cerebrospinal fluid (CSF) from NPC cats and human patients. The pattern of Aβ peptides and sAPP-α/β fragments in cell media was differently affected by NPC-phenotype induced by U18666A treatment and by NPC1 ( -/- ) genotype. U18666A treatment increased the secreted media levels of sAPP-α, AβX-40 and AβX-42 and reduced the levels of sAPP-β, Aβ1-40 and Aβ1-42, while IP-MS showed increased relative levels of Aβ5-38 and Aβ5-40 in response to treatment. NPC1 ( -/- ) cells had reduced media levels of sAPP-α and Aβ1-16, and increased levels of sAPP-β. NPC cats had altered CSF distribution of Aβ peptides compared with normal cats. Cats treated with the potential disease-modifying compound 2-hydroxypropyl-β-cyclodextrin had increased relative levels of short Aβ peptides including Aβ1-16 compared with untreated cats. NPC patients receiving β-cyclodextrin had reduced levels over time of CSF Aβ1-42, AβX-38, AβX-40, AβX-42 and sAPP-β, as well as reduced levels of the axonal damage markers tau and phosphorylated tau. We conclude that NPC models have altered Aβ metabolism, but with differences across experimental systems, suggesting that NPC1-loss of function, such as in NPC1 ( -/- ) cells, or NPC1-dysfunction, seen in NPC patients and cats as well as in U18666A-treated cells, may cause subtle but different effects on APP degradation pathways. The preliminary findings from NPC cats suggest that treatment with cyclodextrin may have an impact on APP processing pathways. CSF Aβ, sAPP and tau biomarkers were dynamically altered over time in human NPC patients.
  •  
4.
  • Mattsson, Niklas, 1979, et al. (författare)
  • Longitudinal cerebrospinal fluid biomarkers over four years in mild cognitive impairment.
  • 2012
  • Ingår i: Journal of Alzheimer's disease : JAD. - 1875-8908 .- 1387-2877. ; 30:4, s. 767-78
  • Tidskriftsartikel (refereegranskat)abstract
    • Cerebrospinal fluid (CSF) measurements of amyloid-β42 (Aβ42), total-tau (T-tau), and phosphorylated tau (P-tau) may be used to predict future Alzheimer's disease (AD) dementia in patients with mild cognitive impairment (MCI). The precise temporal development of these biomarkers in relation to clinical progression is unclear. Earlier studies have been hampered by short follow-up. In an MCI cohort, we selected 15 patients who developed AD (MCI-AD) and 15 who remained cognitively stable during 4 years of follow-up. CSF was sampled at three serial occasions from each patient and analyzed for Aβ peptides, the soluble amyloid-β protein precursor protein fragments sAβPPα and sAβPPβ, T-tau, P-tau, and chromogranin B, which is a protein linked to regulated neuronal secretion. We also measured, for the first time in MCI patients, an extended panel of Aβ peptides by matrix-assisted-laser-desorption/ionization time-of-flight mass spectrometry (MS). Most biomarkers were surprisingly stable over the four years with coefficients of variation below or close to 10%. However, MCI-AD patients decreased in CSF AβX₋₄₀ and chromogranin B concentrations, which may indicate a reduced number of functional neurons or synapses with disease progression. The MS Aβ peptide panel was more useful than any single Aβ peptide to identify MCI-AD patients already at baseline. Knowledge on these biomarkers and their trajectories may facilitate early diagnosis of AD and be useful in future clinical trials to track effects of disease modifying drugs.
  •  
5.
  • Portelius, Erik, 1977, et al. (författare)
  • A novel Aβ isoform pattern in CSF reflects γ-secretase inhibition in Alzheimer disease
  • 2010
  • Ingår i: Alzheimer's research & therapy. - : Springer Science and Business Media LLC. - 1758-9193. ; 2:2
  • Tidskriftsartikel (refereegranskat)abstract
    • ABSTRACT: INTRODUCTION: LY450139 (semagacestat) inhibits gamma-secretase, a key enzyme for generation of amyloid beta (Abeta), the peptide deposited in plaques in Alzheimer disease (AD). Previous data have shown that LY450139 lowers plasma Abeta, but has no clear effect on Abeta1-40 or Abeta1-42 levels in cerebrospinal fluid (CSF). By using targeted proteomics techniques, we recently identified several shorter Abeta isoforms, such as Abeta1-16, that in experimental settings increase during gamma-secretase inhibitor treatment, and thus may serve as sensitive biochemical indices of the treatment effect. Here, we test the hypothesis that these shorter Abeta isoforms may be biomarkers of gamma-secretase inhibitor treatment in clinical trials. METHODS: In a phase II clinical trial, 35 individuals with mild to moderate AD were randomized to placebo (n = 10) or LY450139 (100 mg (n = 15) or 140 mg (n = 10)) and underwent lumbar puncture at baseline and after 14 weeks of treatment. The CSF Abeta isoform pattern was analyzed with immunoprecipitation combined with MALDI-TOF mass spectrometry. RESULTS: The CSF levels of Abeta1-14, Abeta1-15, and Abeta1-16 showed a dose-dependent increase by 57% and 74%, 21% and 35%, and 30% and 67%, respectively in the 100-mg and 140-mg treatment groups. Abeta1-40 and Abeta1-42 were unaffected by treatment. CONCLUSIONS: CSF Abeta1-14, Abeta1-15, and Abeta1-16 increase during gamma-secretase inhibitor treatment in AD, even at doses that do not affect Abeta1-42 or Abeta1-40, probably because of increased substrate availability of the C99 APP stub (APP beta-CTF) induced by gamma-secretase inhibition. These Abeta isoforms may be novel sensitive biomarkers to monitor the biochemical effect in clinical trials. TRIAL REGISTRATION: Clinical Trials.gov NCT00244322.
  •  
6.
  • Portelius, Erik, 1977, et al. (författare)
  • Acute effect on the Aβ isoform pattern in CSF in response to γ-secretase modulator and inhibitor treatment in dogs.
  • 2010
  • Ingår i: Journal of Alzheimer's disease : JAD. - 1875-8908. ; 21:3, s. 1005-12
  • Tidskriftsartikel (refereegranskat)abstract
    • Alzheimer's disease (AD) is associated with deposition of amyloid-β (Aβ) in the brain, which is reflected by low concentration of the Aβ(1-42) peptide in the cerebrospinal fluid (CSF). The γ-secretase inhibitor LY450139 (semagacestat) lowers plasma Aβ(1-40) and Aβ(1-42) in a dose-dependent manner but has no clear effect on the CSF level of these isoforms. Less is known about the potent γ-secretase modulator E2012. Using targeted proteomics techniques, we recently identified several shorter Aβ isoforms in CSF, such as Aβ(1-16), which is produced by a novel pathway. In a Phase II clinical trial on AD patients, Aβ(1-14), Aβ(1-15) and Aβ(1-16) increased several-fold during γ-secretase inhibitor treatment. In the present study, 9 dogs were treated with a single dose of the γ-secretase modulator E2012, the γ-secretase inhibitor LY450139, or vehicle with a dosing interval of 1 week. The CSF Aβ isoform pattern was analyzed by immunoprecipitation combined with MALDI-TOF mass spectrometry. We show here that Aβ(1-15) and Aβ(1-16) increase while Aβ(1-34) decreases in response to treatment with the γ-secretase inhibitor LY450139, which is in agreement with previous studies. The isoform Aβ(1-37) was significantly increased in a dose-dependent manner in response to treatment with E2012, while Aβ(1-39), Aβ(1-40) and A(1-42) decreased. The data presented suggests that the γ-secretase modulator E-2012 alters the cleavage site preference of γ-secretase. The increase in Aβ(1-37) may inhibit Aβ(1-42) oligomerization and toxicity.
  •  
7.
  • Portelius, Erik, 1977, et al. (författare)
  • Distinct cerebrospinal fluid amyloid beta peptide signatures in sporadic and PSEN1 A431E-associated familial Alzheimer's disease.
  • 2010
  • Ingår i: Molecular neurodegeneration. - : Springer Science and Business Media LLC. - 1750-1326. ; 5:2
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Alzheimer's disease (AD) is associated with deposition of amyloid beta (Abeta) in the brain, which is reflected by low concentration of the Abeta1-42 peptide in the cerebrospinal fluid (CSF). There are at least 15 additional Abeta peptides in human CSF and their relative abundance pattern is thought to reflect the production and degradation of Abeta. Here, we test the hypothesis that AD is characterized by a specific CSF Abeta isoform pattern that is distinct when comparing sporadic AD (SAD) and familial AD (FAD) due to different mechanisms underlying brain amyloid pathology in the two disease groups. RESULTS: We measured Abeta isoform concentrations in CSF from 18 patients with SAD, 7 carriers of the FAD-associated presenilin 1 (PSEN1) A431E mutation, 17 healthy controls and 6 patients with depression using immunoprecipitation-mass spectrometry. Low CSF levels of Abeta1-42 and high levels of Abeta1-16 distinguished SAD patients and FAD mutation carriers from healthy controls and depressed patients. SAD and FAD were characterized by similar changes in Abeta1-42 and Abeta1-16, but FAD mutation carriers exhibited very low levels of Abeta1-37, Abeta1-38 and Abeta1-39. CONCLUSION: SAD patients and PSEN1 A431E mutation carriers are characterized by aberrant CSF Abeta isoform patterns that hold clinically relevant diagnostic information. PSEN1 A431E mutation carriers exhibit low levels of Abeta1-37, Abeta1-38 and Abeta1-39; fragments that are normally produced by gamma-secretase, suggesting that the PSEN1 A431E mutation modulates gamma-secretase cleavage site preference in a disease-promoting manner.
  •  
8.
  • Portelius, Erik, 1977, et al. (författare)
  • Evaluation of the performance of novel Aβ isoforms as theragnostic markers in Alzheimer's disease: from the cell to the patient.
  • 2012
  • Ingår i: Neuro-degenerative diseases. - : S. Karger AG. - 1660-2862 .- 1660-2854. ; 10:1-4, s. 138-40
  • Tidskriftsartikel (refereegranskat)abstract
    • Alzheimer's disease (AD) is the most common neurodegenerative disorder in the aging population and is characterized by extracellular plaques in the brain. The last decades have witnessed an explosion in studies of the role of amyloid-β (Aβ) metabolism and aggregation in the pathogenesis of AD which has been translated into novel promising therapies with putative disease-modifying effects.
  •  
9.
  • Portelius, Erik, 1977, et al. (författare)
  • The amyloid-β isoform pattern in cerebrospinal fluid in familial PSEN1 M139T- and L286P-associated Alzheimer's disease
  • 2012
  • Ingår i: Molecular Medicine Reports. - : Spandidos Publications. - 1791-2997 .- 1791-3004. ; 5:4, s. 1111-1115
  • Tidskriftsartikel (refereegranskat)abstract
    • There are several familial forms of Alzheimer's disease (AD) most of which are caused by mutations in the genes that encode the presenilin enzymes involved in the production of amyloid-β (Aβ) from the amyloid precursor protein (APP). In AD, Aβ forms fibrils that are deposited in the brain as plaques. Much of the fibrillar Aβ found in the plaques consists of the 42 amino acid form of Aβ (Aβ1-42) and it is now widely accepted that Aβ is related to the pathogenesis of AD and that Aβ may both impair memory and be neurotoxic. In human cerebrospinal fluid (CSF) several C- and N-terminally truncated Aβ isoforms have been detected and their relative abundance pattern is thought to reflect the production and clearance of Aβ. By using immunoprecipitation and mass spectrometry, we have previously demonstrated that carriers of the familial AD (FAD)-associated PSEN1 A431E mutation have low CSF levels of C-terminally truncated Aβ isoforms shorter than Aβ1-40. Here we replicate this finding in symptomatic carriers of the FAD-causing PSEN1 L286P mutation. Furthermore, we show that preclinical carriers of the PSEN1 M139T mutation may overexpress Aβ1-42 suggesting that this particular mutation may cause AD by stimulating γ-secretase-mediated cleavage at amino acid 42 in the Aβ sequence.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy