SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Andren O) ;lar1:(sh)"

Sökning: WFRF:(Andren O) > Södertörns högskola

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kotthoff, U., et al. (författare)
  • Reconstructing Holocene temperature and salinity variations in the western Baltic Sea region: a multi-proxy comparison from the Little Belt (IODP Expedition 347, Site M0059)
  • 2017
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 14, s. 5607-5632
  • Tidskriftsartikel (refereegranskat)abstract
    • Sediment records recovered from the Baltic Sea during Integrated Ocean Drilling Program Expedition 347 provide a unique opportunity to study paleoenvironmental and climate change in central and northern Europe. Such studies contribute to a better understanding of how environmental parameters change in continental shelf seas and enclosed basins. Here we present a multi-proxy-based reconstruction of paleotemperature (both marine and terrestrial), paleosalinity, and paleoecosystem changes from the Little Belt (Site M0059) over the past  ∼  8000 years and evaluate the applicability of inorganic- and organic-based proxies in this particular setting. All salinity proxies (diatoms, aquatic palynomorphs, ostracods, diol index) show that lacustrine conditions occurred in the Little Belt until  ∼  7400 cal yr BP. A connection to the Kattegat at this time can thus be excluded, but a direct connection to the Baltic Proper may have existed. The transition to the brackish–marine conditions of the Littorina Sea stage (more saline and warmer) occurred within  ∼  200 years when the connection to the Kattegat became established after  ∼  7400 cal yr BP. The different salinity proxies used here generally show similar trends in relative changes in salinity, but often do not allow quantitative estimates of salinity. The reconstruction of water temperatures is associated with particularly large uncertainties and variations in absolute values by up to 8 °C for bottom waters and up to 16 °C for surface waters. Concerning the reconstruction of temperature using foraminiferal Mg  /  Ca ratios, contamination by authigenic coatings in the deeper intervals may have led to an overestimation of temperatures. Differences in results based on the lipid paleothermometers (long chain diol index and TEXL86) can partly be explained by the application of modern-day proxy calibrations to intervals that experienced significant changes in depositional settings: in the case of our study, the change from freshwater to marine conditions. Our study shows that particular caution has to be taken when applying and interpreting proxies in coastal environments and marginal seas, where water mass conditions can experience more rapid and larger changes than in open ocean settings. Approaches using a multitude of independent proxies may thus allow a more robust paleoenvironmental assessment.
  •  
2.
  • Dahl, Martin, 1984-, et al. (författare)
  • A 2,000-Year Record of Eelgrass (Zostera marina L.) : Colonization Shows Substantial Gains in Blue Carbon Storage and Nutrient Retention
  • 2024
  • Ingår i: Global Biogeochemical Cycles. - : John Wiley & Sons. - 0886-6236 .- 1944-9224. ; 38:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Assessing historical environmental conditions linked to habitat colonization is important for understanding long-term resilience and improving conservation and restoration efforts. Such information is lacking for the seagrass Zostera marina, an important foundation species across cold-temperate coastal areas of the Northern Hemisphere. Here, we reconstructed environmental conditions during the last 14,000 years from sediment cores in two eelgrass (Z. marina) meadows along the Swedish west coast, with the main aims to identify the time frame of seagrass colonization and describe subsequent biogeochemical changes following establishment. Based on vegetation proxies (lipid biomarkers), eelgrass colonization occurred about 2,000 years ago after geomorphological changes that resulted in a shallow, sheltered environment favoring seagrass growth. Seagrass establishment led to up to 20- and 24-fold increases in sedimentary carbon and nitrogen accumulation rates, respectively. This demonstrates the capacity of seagrasses as efficient ecosystem engineers and their role in global change mitigation and adaptation through CO2 removal, and nutrient and sediment retention. By combining regional climate projections and landscape models, we assessed potential climate change effects on seagrass growth, productivity and distribution until 2100. These predictions showed that seagrass meadows are mostly at risk from increased sedimentation and hydrodynamic changes, while the impact from sea level rise alone might be of less importance in the studied area. This study showcases the positive feedback between seagrass colonization and environmental conditions, which holds promise for successful conservation and restoration efforts aimed at supporting climate change mitigation and adaptation, and the provision of several other crucial ecosystem services. © 2024. The Authors.
  •  
3.
  • Hyttinen, O., et al. (författare)
  • Deglaciation dynamics of the Fennoscandian Ice Sheet in the Kattegat, the gateway between the North Sea and the Baltic Sea Basin
  • 2021
  • Ingår i: Boreas. - : John Wiley & Sons. - 0300-9483 .- 1502-3885. ; 50:2, s. 351-368
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper presents an age–depth model based on an ultra-high-resolution, 80-m-thick sedimentary succession from a marine continental shelf basin, the Kattegat. This is an area of dynamic deglaciation of the Fennoscandian Ice Sheet during the Late Pleistocene. The Kattegat is also a transitional area between the saline North Sea and the brackish Baltic Sea. As such, it records general development of currents and exchange between these two systems. Data for the succession were provided through the Integrated Ocean Drilling Program Site M0060. The site indicates onset of deglaciation at c. 18 ka BP and relatively continuous sedimentation until 13 ka BP. At this point, sediments record a hiatus until c. 9–7 ka BP. The uppermost sedimentary unit contains redeposited material, but it is estimated to represent only the last c. 9–7 ka BP. The age–depth model is based on 17 select, radiocarbon-dated samples and is integrated with a set of physical and chemical proxies. The integrated records provide novel constraints on the timing of major palaeoenvironmental changes, such as the transition from glaciomarine proximal to glaciomarine distal and marine conditions, and their connections to known major events and processes in the region and the North Atlantic. Depositional evidence specifically documents connections between the Fennoscandian Ice Sheet behaviour and atmospheric and oceanic warming. Glacial retreat may have also depended on topographic factors such as changes in basin width and depth, linked to relative sea level changes and land uplift. The results indicate an early response of the Fennoscandian Ice Sheet to changing climate, and the ice sheet's possible influence on oceanic circulation during the Late Pleistocene deglaciation.
  •  
4.
  • Hyttinen, O., et al. (författare)
  • Holocene stratigraphy of the Ångermanälven River estuary, Bothnian Sea
  • 2017
  • Ingår i: Geo-Marine Letters. - : Springer. - 0276-0460 .- 1432-1157. ; 37:3, s. 273-288
  • Tidskriftsartikel (refereegranskat)abstract
    • This study explores the Holocene depositional succession at the IODP Expedition 347 sites M0061 and M0062 in the vicinity of the Ångermanälven River estuary in the Bothnian Sea sector of the Baltic Sea in northern Scandinavia. Site M0061 is located in a coastal offshore setting (87.9 m water depth), whereas site M0062 is fully estuarine (69.3 m water depth). The dataset comprises acoustic profiles and sediment cores collected in 2007 and late 2013 respectively. Three acoustic units (AUs) were recognized. Lowermost AU1 is interpreted as a poorly to discontinuous stratified glaciofluvial deposit, AU2 as a stratified conformable drape of glaciolacustrine origin, and AU3 as a poorly stratified to stratified mud drift. A strong truncating reflector separates AU2 and AU3. Three lithological units (LUs) were defined in the sediment cores. LU1 consists of glaciofluvial sand and silt gradating into LU2, which consists of glaciolacustrine varves. A sharp contact interpreted as a major unconformity separates LU2 from the overlying LU3 (brackish-water mud). In the basal part of LU3, one debrite (site M0061) or two debrites (site M0062) were recognized. Information yielded from sediment physical properties (magnetic susceptibility, natural gamma ray, dry bulk density), geochemistry (total carbon, total organic carbon, total inorganic carbon and nitrogen), and grain size support the LU division. The depositional succession was formally subdivided into two alloformations: the Utansjö Alloformation and overlying Hemsön Alloformation; the Utansjö Alloformation was further subdivided into two lithostratigraphic formations: the Storfjärden and Åbordsön formations. The Storfjärden (sandy outwash) and Åbordsön (glaciolacustrine rhythmite) formations represent a glacial retreat systems tract, which started at ca. 10.6 kyr BP. Their deposition was mainly controlled by meltwater from the retreating ice margin, glacio-isostatic land uplift and the regressive (glacial) lake level. The Hemsön Alloformation (organic-rich brackish-water mud) represents a period of forced regression, starting possibly at ca. 9.5 kyr BP. At about 7 kyr BP, brackish water reached the study area as a result of the mid-Holocene marine flooding of the Baltic Sea Basin, but the rapid land uplift soon surpassed the associated (Littorina) transgression. Changed near-bottom current patterns, caused by the establishment of a permanent halocline, and the reduced sediment consistency caused by increased organic deposition resulted in a sharp and erosional base of the brackish-water mud. Estuarine processes and salinity stratification at site M0062 started to play a more important role. This study applies a combined allostratigraphic and lithostratigraphic approach over the conventional Baltic Sea stages. This approach makes it more straightforward to study this Baltic Sea deglaciation–postglacial sequence and compare it to other formerly glaciated shallow sea estuaries.
  •  
5.
  • Obrochta, S. P., et al. (författare)
  • The undatables : Quantifying uncertainty in a highly expanded Late Glacial-Holocene sediment sequence recovered from the deepest Baltic Sea basin—IODP Site M0063
  • 2017
  • Ingår i: Geochemistry Geophysics Geosystems. - : American Geophysical Union (AGU). - 1525-2027. ; 18:3, s. 858-871
  • Tidskriftsartikel (refereegranskat)abstract
    • Laminated, organic-rich silts and clays with high dissolved gas content characterize sediments at IODP Site M0063 in the Landsort Deep, which at 459 m is the deepest basin in the Baltic Sea. Cores recovered from Hole M0063A experienced significant expansion as gas was released during the recovery process, resulting in high sediment loss. Therefore, during operations at subsequent holes, penetration was reduced to 2 m per 3.3 m core, permitting expansion into 1.3 m of initially empty liner. Fully filled liners were recovered from Holes B through E, indicating that the length of recovered intervals exceeded the penetrated distance by a factor of >1.5. A typical down-core logarithmic trend in gamma density profiles, with anomalously low-density values within the upper ∼1 m of each core, suggests that expansion primarily occurred in this upper interval. Thus, we suggest that a simple linear correction is inappropriate. This interpretation is supported by anisotropy of magnetic susceptibility data that indicate vertical stretching in the upper ∼1.5 m of expanded cores. Based on the mean gamma density profiles of cores from Holes M0063C and D, we obtain an expansion function that is used to adjust the depth of each core to conform to its known penetration. The variance in these profiles allows for quantification of uncertainty in the adjusted depth scale. Using a number of bulk 14C dates, we explore how the presence of multiple carbon source pathways leads to poorly constrained radiocarbon reservoir age variability that significantly affects age and sedimentation rate calculations.
  •  
6.
  • Robertsson, A M, et al. (författare)
  • Pleistocene stratigraphy in the Dellen region, central Sweden
  • 1997
  • Ingår i: Boreas. - : Wiley. - 0300-9483 .- 1502-3885. ; 26, s. 237-260
  • Tidskriftsartikel (refereegranskat)abstract
    • The Pleistocene stratigraphy in the Dellen region, central Sweden was studied using field observations made during mapping of Quaternary deposits and fabric analyses in excavated sections. The lithostratigraphy was also studied by seismic refraction measurements, analyses of grain-size distribution and organic carbon content. Biostratigraphical methods applied were pollen and diatom analyses. A general outline of the Pleistocene stratigraphy in the area is presented. Three different till beds are identified, the lowermost suggested to have been deposited during the Saalian glaciation and the other two during the Weichselian glaciation. According to the interpretation of the stratigraphy, it is questioned whether the first Weichselian ice sheer did in fact reach the Dellen area. A clayey sediment sequence at Norra Sannas accumulated during an interglacial, probably the Eemian. Most of the interglacial vegetation succession is reflected in the identified pollen flora. An initial phase with a light-demanding forest of Betula and Pinus was followed by immigration of Alnus, Picea and scattered occurrences of Corylus. A freshwater diatom flora was identified dominated by plankton taxa, e.g. Aulacoseira italica, A. distans and Cyclotella spp. In the lower part of the sequence a brackish-marine flora was registered, representing accumulation in a bay of the Eemian Sea. Fine-grained sediments at the Sundson and Vastansjo sites are interpreted as rebedded Eemiar. sediments according to the pollen flora. An (Early Weichselian) interstadial age is suggested ibr sediments found at Bjuraker. Dating by the C-14- and OSL methods was carried out on the interglacial and interstadial sediments, respectively. The ages range from approximately 19 000 to 92 000 BP. Correlation of interglacial vegetation history with central Finland and other areas is discussed.
  •  
7.
  • Stepanova, A., et al. (författare)
  • Late Weichselian to Holocene history of the Baltic Sea as reflected in ostracod assemblages
  • 2019
  • Ingår i: Boreas. - : John Wiley & Sons. - 0300-9483 .- 1502-3885. ; 48:3, s. 761-778
  • Tidskriftsartikel (refereegranskat)abstract
    • The study presents the first description and analysis of ostracod records from three sites cored in different parts of the Baltic Sea during the IODP Expedition 347, Baltic Sea Paleoenvironment. Our data present the first high-resolution ostracod records from the Late Weichselian and Holocene sediments collected across the Baltic Sea Basin. Using published data on modern ostracod species ecology of the Baltic Sea, we were able to provide ostracod-based palaeoreconstructions of the history of the region. The stratigraphical framework for the sites is based on radiocarbon-based age models. The three studied sites reveal different ostracod assemblage successions that reflect environmental changes in the study area. Site M0060, located in the Kattegat area, contains the oldest ostracod assemblages that document a marine environment with very high sedimentation rates during the most recent deglaciation. Between ~13 000 and 7500 cal. a BP a modern-like near-shore environment developed. Site M0059 in the southwestern Baltic Sea, Little Belt area, contains assemblages reflecting the transition from a freshwater lake to the brackish Littorina Sea between ~7500 and 7300 cal. a BP. Site M0063 is the deepest location in the central Baltic, Landsort Deep, and yielded very limited ostracod data, but comparison with our organic carbon data allowed us to distinguish the Yoldia Sea, Ancylus Lake and Littorina Sea intervals. The ostracod record correlates well with the organic carbon record with alternation between periods of hypoxia and periods of low oxygen that still supported ostracods.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy