1. |
- Abdallah, J., et al.
(författare)
-
Mechanical construction and installation of the ATLAS tile calorimeter
- 2013
-
Ingår i: Journal of Instrumentation. - 1748-0221. ; 8, s. T11001-
-
Tidskriftsartikel (refereegranskat)abstract
- This paper summarises the mechanical construction and installation of the Tile Calorimeter for the ATLAS experiment at the Large Hadron Collider in CERN, Switzerland. The Tile Calorimeter is a sampling calorimeter using scintillator as the sensitive detector and steel as the absorber and covers the central region of the ATLAS experiment up to pseudorapidities +/- 1.7. The mechanical construction of the Tile Calorimeter occurred over a period of about 10 years beginning in 1995 with the completion of the Technical Design Report and ending in 2006 with the installation of the final module in the ATLAS cavern. During this period approximately 2600 metric tons of steel were transformed into a laminated structure to form the absorber of the sampling calorimeter. Following instrumentation and testing, which is described elsewhere, the modules were installed in the ATLAS cavern with a remarkable accuracy for a structure of this size and weight.
|
|
2. |
- Abdallah, J., et al.
(författare)
-
The optical instrumentation of the ATLAS Tile Calorimeter
- 2013
-
Ingår i: Journal of Instrumentation. - 1748-0221. ; 8, s. P01005-
-
Tidskriftsartikel (refereegranskat)abstract
- The Tile Calorimeter, covering the central region of the ATLAS experiment up to pseudorapidities of +/-1.7, is a sampling device built with scintillating tiles that alternate with iron plates. The light is collected in wave-length shifting (WLS) fibers and is read out with photomultipliers. In the characteristic geometry of this calorimeter the tiles lie in planes perpendicular to the beams, resulting in a very simple and modular mechanical and optical layout. This paper focuses on the procedures applied in the optical instrumentation of the calorimeter, which involved the assembly of about 460,000 scintillator tiles and 550,000 WLS fibers. The outcome is a hadronic calorimeter that meets the ATLAS performance requirements, as shown in this paper.
|
|
3. |
- Eijsbouts, C., et al.
(författare)
-
Genome-wide analysis of 53,400 people with irritable bowel syndrome highlights shared genetic pathways with mood and anxiety disorders
- 2021
-
Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 53:11, s. 1543-1552
-
Tidskriftsartikel (refereegranskat)abstract
- Irritable bowel syndrome (IBS) results from disordered brain–gut interactions. Identifying susceptibility genes could highlight the underlying pathophysiological mechanisms. We designed a digestive health questionnaire for UK Biobank and combined identified cases with IBS with independent cohorts. We conducted a genome-wide association study with 53,400 cases and 433,201 controls and replicated significant associations in a 23andMe panel (205,252 cases and 1,384,055 controls). Our study identified and confirmed six genetic susceptibility loci for IBS. Implicated genes included NCAM1, CADM2, PHF2/FAM120A, DOCK9, CKAP2/TPTE2P3 and BAG6. The first four are associated with mood and anxiety disorders, expressed in the nervous system, or both. Mirroring this, we also found strong genome-wide correlation between the risk of IBS and anxiety, neuroticism and depression (rg > 0.5). Additional analyses suggested this arises due to shared pathogenic pathways rather than, for example, anxiety causing abdominal symptoms. Implicated mechanisms require further exploration to help understand the altered brain–gut interactions underlying IBS. © 2021, The Author(s).
|
|
4. |
- Fritz, N., et al.
(författare)
-
The serotonin receptor 3E variant is a risk factor for female IBS-D
- 2022
-
Ingår i: Journal of Molecular Medicine-Jmm. - : Springer Science and Business Media LLC. - 0946-2716 .- 1432-1440. ; 100:11, s. 1617-1627
-
Tidskriftsartikel (refereegranskat)abstract
- Irritable bowel syndrome (IBS) is a gut-brain disorder of multifactorial origin. Evidence of disturbed serotonergic function in IBS accumulated for the 5-HT3 receptor family. 5-HT(3)Rs are encoded by HTR3 genes and control GI function, and peristalsis and secretion, in particular. Moreover, 5-HT3R antagonists are beneficial in the treatment of diarrhea predominant IBS (IBS-D). We previously reported on functionally relevant SNPs in HTR3A c.-42C > T (rs1062613), HTR3C p.N163K (rs6766410), and HTR3E c.*76G > A (rs56109847 = rs62625044) being associated with IBS-D, and the HTR3B variant p.Y129S (rs1176744) was also described within the context of IBS. We performed a multi-center study to validate previous results and provide further evidence for the relevance of HTR3 genes in IBS pathogenesis. Therefore, genotype data of 2682 IBS patients and 9650 controls from 14 cohorts (Chile, Germany (2), Greece, Ireland, Spain, Sweden (2), the UK (3), and the USA (3)) were taken into account. Subsequent meta-analysis confirmed HTR3E c.*76G > A (rs56109847 = rs62625044) to be associated with female IBS-D (OR = 1.58; 95% CI (1.18, 2.12)). Complementary expression studies of four GI regions (jejunum, ileum, colon, sigmoid colon) of 66 IBS patients and 42 controls revealed only HTR3E to be robustly expressed. On top, HTR3E transcript levels were significantly reduced in the sigma of IBS patients (p = 0.0187); more specifically, in those diagnosed with IBS-D (p = 0.0145). In conclusion, meta-analysis confirmed rs56109847 = rs62625044 as a risk factor for female IBS-D. Expression analysis revealed reduced HTR3E levels in the sigmoid colon of IBS-D patients, which underlines the relevance of HTR3E in the pathogenesis of IBS-D.
|
|
5. |
|
|
6. |
- Mohr, S., et al.
(författare)
-
The alternative serotonin transporter promoter P2 impacts gene function in females with irritable bowel syndrome
- 2021
-
Ingår i: Journal of Cellular and Molecular Medicine. - : Wiley. - 1582-1838 .- 1582-4934. ; 25:16, s. 8047-8061
-
Tidskriftsartikel (refereegranskat)abstract
- Irritable bowel syndrome (IBS) is a gut-brain disorder in which symptoms are shaped by serotonin acting centrally and peripherally. The serotonin transporter gene SLC6A4 has been implicated in IBS pathophysiology, but the underlying genetic mechanisms remain unclear. We sequenced the alternative P2 promoter driving intestinal SLC6A4 expression and identified single nucleotide polymorphisms (SNPs) that were associated with IBS in a discovery sample. Identified SNPs built different haplotypes, and the tagging SNP rs2020938 seems to associate with constipation-predominant IBS (IBS-C) in females. rs2020938 validation was performed in 1978 additional IBS patients and 6,038 controls from eight countries. Meta-analysis on data from 2,175 IBS patients and 6,128 controls confirmed the association with female IBS-C. Expression analyses revealed that the P2 promoter drives SLC6A4 expression primarily in the small intestine. Gene reporter assays showed a functional impact of SNPs in the P2 region. In silico analysis of the polymorphic promoter indicated differential expression regulation. Further follow-up revealed that the major allele of the tagging SNP rs2020938 correlates with differential SLC6A4 expression in the jejunum and with stool consistency, indicating functional relevance. Our data consolidate rs2020938 as a functional SNP associated with IBS-C risk in females, underlining the relevance of SLC6A4 in IBS pathogenesis.
|
|
7. |
|
|
8. |
|
|
9. |
|
|
10. |
|
|