SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ansari H) ;lar1:(ltu)"

Sökning: WFRF:(Ansari H) > Luleå tekniska universitet

  • Resultat 1-10 av 52
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Rashid, Hayder M., et al. (författare)
  • Novel material from immobilization of magnesium oxide and cetyl trimethyl ammonium bromide nanoparticles onto waterworks sludge for removing methylene blue from aqueous solution
  • 2023
  • Ingår i: Journal of King Saud University - Science. - : Elsevier. - 1018-3647. ; 35:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Utilizing the waterworks sludge byproduct in the treatment of wastewater contained methylene blue dye is one approach that has been taken in an effort to lessen the difficulties that are associated with managing such byproduct. The prime aim of this work is manufacturing of novel sorbent from co-precipitation of magnesium oxide nanoparticles on the surfaces of waterworks sludge in the existence of cetyl trimethyl ammonium bromide surfactant. Surfactant 0.04 g/50 mL, dose of sludge 2 g/50 mL, and pH 12 were the most efficient preparation parameters to remove 75.31% of adopted dye. The adsorption studies were conducted under various conditions of contact time (0–240 min), concentration of dye (10–300 mg/L), sorbent mass (0.05–1.5 g), and solution pH (3–12). The best values of batch parameters were identical to the highest percentages of contaminant removal. Results proved that the magnesium oxide nanoparticles are attached to the sludge surfaces. Freundlich and pseudo-second-order models have perfectly described sorption results with 59.92 mg/g maximum sorption capacity. The breakthrough curves can be accurately described by the Bohart-Adams model. The outputs of continuous tests have been paved the way for future usage of the prepared sorbent in the field permeable reactive barrier technology.
  •  
2.
  •  
3.
  •  
4.
  • Faisal, Ayad A. H, et al. (författare)
  • Controlling metal ion migration in contaminated groundwater with Iraqi clay barriers for water resource protection
  • 2023
  • Ingår i: RSC Advances. - : Royal Society of Chemistry. - 2046-2069. ; 13:24, s. 16196-16205
  • Tidskriftsartikel (refereegranskat)abstract
    • This study investigates the effectiveness of using Iraqi clay as a low-permeability layer to prevent the migration of lead and nickel ions in groundwater-aquifers. Tests of batch operation have been conducted to determine the optimal conditions for removing Pb2+ ions, which were found to be 120 minutes of contact time, a pH of 5, 0.12 g of clay per 100 mL of solution, and an agitation of 250 rpm. These conditions resulted in a 90% removal efficiency for a 50 mg L−1 initial concentration of lead ions. To remove nickel ions with an efficiency of 80%, the optimal conditions were 60 minutes of contact time, a pH of 6, 12 g of clay per 100 mL of solution, and an agitation of 250 rpm. Several sorption models were evaluated, and the Langmuir formula was found to be the most effective. The highest sorption capacities were 1.75 and 137 mg g−1 for nickel and lead ions, respectively. The spread of metal ions was simulated using finite element analysis in the COMSOL multiphysics simulation software, taking into account the presence of a clay barrier. The results showed that the barrier creates low-discharge zones along the down-gradient of the barrier, reducing the rate of pollutant migration to protect the water sources.
  •  
5.
  •  
6.
  • Hommadi, Ali H., et al. (författare)
  • Evaluation of Actual Evapotranspiration and Crop Coefficient in Carrot by Remote Sensing Methodology Using Drainage and River Water to Overcome Reduced Water Availability
  • 2023
  • Ingår i: Engineering. - : Scientific Research Publishing. - 1947-3931 .- 1947-394X. ; 15:05, s. 352-366
  • Tidskriftsartikel (refereegranskat)abstract
    • Searching for alternative methods for traditional irrigation is World trend at days due to a reduction in water and increased of drought due to climate changes therefore farmers need use modern methods of scheduling water and minimizing water losses while also increasing yield. To meet the future increasing demands water and food there is a need to utilize alternative methods to reduce evaporation, transpiration and deep percolation of water. Any countries use recycled water (drain and sewage) and desalination water from the sea or drains to irrigate crops plus computing actual crop evapotranspiration (ETc) so as to calculate the amount of water to apply to a crop.The paper aims to assess the actual evaporation and evaporation coefficient of carrots, by planting carrots in a field and the crop was exposed to several sources of water (DW and RW) and comparing ETc, Kc and production among plots of three sites (A, B and C). The study used two types of irrigation water (drain water (DW) and river water (RW)). The results were to monthly rate and accumulated actual evapotranspiration to C (irrigation by RW only) more than A (67% RW and 33% DW) and B (17% RW and 83%DW) via 7% and 58%, respectively. The yield to C more than A and B by 17% and 75%, respectively. In conclusion the use of DW can cause a reduction in crop consumptive of carrot crops also causes a reduction in yield, crop length, root length, root size, canopy of crop, number of leaves and biomass of the plant therefore, the drainage water needs to treated before irrigating crops And making use of it to irrigate the fields and fill the shortfall in the amount of water from the river. The drain water helped on filling the water shortage due to climate changes and giving production of carrot crop but less than river water.
  •  
7.
  • Hommadi, Ali H., et al. (författare)
  • Scheduling the Laterals of Shattulhilla River by Utilizing the Genetic Algorithm as Water Sustainability Technique
  • 2024
  • Ingår i: Proceedings of the 4th International Conference on Recent Innovation in Engineering ICRIE 2023, University of Duhok, College of Engineering, 13th – 14th September 2023. - : University of Garmian. ; , s. 84-93
  • Konferensbidrag (refereegranskat)abstract
    • Open channels are very important to deliver water from main sources to laterals especially for developing countries. Production is subjective by the way that the water is scheduled, and this scheduling is subject to several irrigation constraints. In open channel projects, for instance, maximum discharge of the laterals and main channels, depending on the size of their dimensions and the water requirements for fields. The current paper shows how efficient water scheduling, regarding the delivering water from the main channel to laterals in consequent time slots, can be done by utilizing a genetic algorithm optimisation technique. This research is intended to be applied for scheduling the Shattulhilla River in Babylon City and has broad applications for open channel projects in Iraq. The obtained results clarify how the genetic algorithm optimisation modelling is a sophisticated tool which operators of irrigation projects could now utilize to timetable open channels of irrigation systems.
  •  
8.
  • Naji, Laith A., et al. (författare)
  • Modification of Langmuir model for simulating initial pH and temperature effects on sorption process
  • 2020
  • Ingår i: Separation science and technology (Print). - UK : Taylor & Francis. - 0149-6395 .- 1520-5754. ; 55:15, s. 2729-2736
  • Tidskriftsartikel (refereegranskat)abstract
    • The present study modifies the sorption isothermfor simulating the influences of initial pH and temperature variations on thecadmium sorption from contaminated water using waste foundry sand based on Langmuir,Freundlich and Temkin models. Results proved that the Langmuir expression is ableto adopt these effects by relating sorption capacity and affinity constantswith pH and temperature of aqueous solution through exponential relationships (determinationcoefficient = 0.9375). The present model is assumed that the sorption process occursthrough acidic functional groups and this is consistent with FTIR outputs. Interactionof cadmium/WFS is found to be exothermic by thermodynamic analysis.
  •  
9.
  • Tao, Hai, et al. (författare)
  • Machine learning algorithms for high-resolution prediction of spatiotemporal distribution of air pollution from meteorological and soil parameters
  • 2023
  • Ingår i: Environment International. - : Elsevier. - 0160-4120 .- 1873-6750. ; 175
  • Tidskriftsartikel (refereegranskat)abstract
    • This study uses machine learning (ML) models for a high-resolution prediction (0.1°×0.1°) of air fine particular matter (PM2.5) concentration, the most harmful to human health, from meteorological and soil data. Iraq was considered the study area to implement the method. Different lags and the changing patterns of four European Reanalysis (ERA5) meteorological variables, rainfall, mean temperature, wind speed and relative humidity, and one soil parameter, the soil moisture, were used to select the suitable set of predictors using a non-greedy algorithm known as simulated annealing (SA). The selected predictors were used to simulate the temporal and spatial variability of air PM2.5 concentration over Iraq during the early summer (May-July), the most polluted months, using three advanced ML models, extremely randomized trees (ERT), stochastic gradient descent backpropagation (SGD-BP) and long short-term memory (LSTM) integrated with Bayesian optimizer. The spatial distribution of the annual average PM2.5 revealed the population of the whole of Iraq is exposed to a pollution level above the standard limit. The changes in temperature and soil moisture and the mean wind speed and humidity of the month before the early summer can predict the temporal and spatial variability of PM2.5 over Iraq during May-July. Results revealed the higher performance of LSTM with normalized root-mean-square error and Kling-Gupta efficiency of 13.4% and 0.89, compared to 16.02% and 0.81 for SDG-BP and 17.9% and 0.74 for ERT. The LSTM could also reconstruct the observed spatial distribution of PM2.5 with MapCurve and Cramer's V values of 0.95 and 0.91, compared to 0.9 and 0.86 for SGD-BP and 0.83 and 0.76 for ERT. The study provided a methodology for forecasting spatial variability of PM2.5 concentration at high resolution during the peak pollution months from freely available data, which can be replicated in other regions for generating high-resolution PM2.5 forecasting maps.
  •  
10.
  • Abbas, Nahlah, et al. (författare)
  • The Impacts of Sea Level Rise on Basrah City,Iraq : The Impacts of Sea Level Rise on Basrah City,Iraq
  • 2020
  • Ingår i: Open Journal of Geology. - USA : Scientific Research Publishing. - 2161-7570 .- 2161-7589. ; 10:12, s. 1189-1197
  • Tidskriftsartikel (refereegranskat)abstract
    • Sea Level Rise (SLR) above the Mean Sea Level (MSL) is more likely to cause a significant risk to the coastal regions. This research explores the potential impact of sea level rise, due to climate change, on coastal areas. It examines the impact of sea level rise on Basrah city and adjacent cities in Iraq. A digital elevation model (DEM) was used to create a model of Potentially Inundated Areas, manipulated and processed in Geographical Information System version 10.7 (ArcGIS 10.7). Through this model, the impact of sea level rise was assessed on the surface area. After the susceptible areas were delineated, it was estimated that at worst case scenario of 5 m sea level rise will impact Basrah city by losing 38 percent of its total surface area.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 52

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy