SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Antier Sarah) "

Sökning: WFRF:(Antier Sarah)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Almualla, Mouza, et al. (författare)
  • Optimizing serendipitous detections of kilonovae : cadence and filter selection
  • 2021
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 504:2, s. 2822-2831
  • Tidskriftsartikel (refereegranskat)abstract
    • The rise of multimessenger astronomy has brought with it the need to exploit all available data streams and learn more about the astrophysical objects that fall within its breadth. One possible avenue is the search for serendipitous optical/near-infrared counterparts of gamma-ray bursts (GRBs) and gravitational-wave (GW) signals, known as kilonovae. With surveys such as the Zwicky Transient Facility (ZTF), which observes the sky with a cadence of similar to 3 d, the existing counterpart locations are likely to be observed; however, due to the significant amount of sky to explore, it is difficult to search for these fast-evolving candidates. Thus, it is beneficial to optimize the survey cadence for realtime kilonova identification and enable further photometric and spectroscopic observations. We explore how the cadence of wide field-of-view surveys like ZTF can be improved to facilitate such identifications. We show that with improved observational choices, e.g. the adoption of three epochs per night on a similar to nightly basis, and the prioritization of redder photometric bands, detection efficiencies improve by about a factor of two relative to the nominal cadence. We also provide realistic hypothetical constraints on the kilonova rate as a form of comparison between strategies, assuming that no kilonovae are detected throughout the long-term execution of the respective observing plan. These results demonstrate how an optimal use of ZTF increases the likelihood of kilonova discovery independent of GWs or GRBs, thereby allowing for a sensitive search with less interruption of its nominal cadence through Target of Opportunity programs.
  •  
2.
  • Coughlin, Michael W., et al. (författare)
  • Implications of the search for optical counterparts during the first six months of the Advanced LIGO's and Advanced Virgo's third observing run : possible limits on the ejecta mass and binary properties
  • 2020
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : OXFORD UNIV PRESS. - 0035-8711 .- 1365-2966. ; 492:1, s. 863-876
  • Tidskriftsartikel (refereegranskat)abstract
    • GW170817 showed that neutron star mergers not only emit gravitational waves but also can release electromagnetic signatures in multiple wavelengths. Within the first half of the third observing run of the Advanced LIGO and Virgo detectors, there have been a number of gravitational wave candidates of compact binary systems for which at least one component is potentially a neutron star. In this article, we look at the candidates S190425z, S190426c, S190510g, S190901ap, and S190910h, predicted to have potentially a non-zero remnant mass, in more detail. All these triggers have been followed up with extensive campaigns by the astronomical community doing electromagnetic searches for their optical counterparts; however, according to the released classification, there is a high probability that some of these events might not be of extraterrestrial origin. Assuming that the triggers are caused by a compact binary coalescence and that the individual source locations have been covered during the EM follow-up campaigns, we employ three different kilonova models and apply them to derive possible constraints on the matter ejection consistent with the publicly available gravitational-wave trigger information and the lack of a kilonova detection. These upper bounds on the ejecta mass can be related to limits on the maximum mass of the binary neutron star candidate S190425z and to constraints on the mass-ratio, spin, and NS compactness for the potential black hole-neutron star candidate S190426c. Our results show that deeper electromagnetic observations for future gravitational wave events near the horizon limit of the advanced detectors are essential.
  •  
3.
  • Coughlin, Michael W., et al. (författare)
  • Implications of the search for optical counterparts during the second part of the Advanced LIGO's and Advanced Virgo's third observing run : lessons learned for future follow-up observations
  • 2020
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press. - 0035-8711 .- 1365-2966. ; 497:1, s. 1181-1196
  • Tidskriftsartikel (refereegranskat)abstract
    • Joint multimessenger observations with gravitational waves and electromagnetic (EM) data offer new insights into the astrophysical studies of compact objects. The third Advanced LIGO and Advanced Virgo observing run began on 2019 April 1; during the 11 months of observation, there have been 14 compact binary systems candidates for which at least one component is potentially a neutron star. Although intensive follow-up campaigns involving tens of ground and space-based observatories searched for counterparts, no EM counterpart has been detected. Following on a previous study of the first six months of the campaign, we present in this paper the next five months of the campaign from 2019 October to 2020 March. We highlight two neutron star-black hole candidates (S191205ah and S200105ae), two binary neutron star candidates (S191213g and S200213t), and a binary merger with a possible neutron star and a `MassGap' component, S200115j. Assuming that the gravitational-wave (GW) candidates are of astrophysical origin and their location was covered by optical telescopes, we derive possible constraints on the matter ejected during the events based on the non-detection of counterparts. We find that the follow-up observations during the second half of the third observing run did not meet the necessary sensitivity to constrain the source properties of the potential GW candidate. Consequently, we suggest that different strategies have to be used to allow a better usage of the available telescope time. We examine different choices for follow-up surveys to optimize sky localization coverage versus observational depth to understand the likelihood of counterpart detection.
  •  
4.
  • Coughlin, Michael W., et al. (författare)
  • Measuring the Hubble constant with a sample of kilonovae
  • 2020
  • Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Kilonovae produced by the coalescence of compact binaries with at least one neutron star are promising standard sirens for an independent measurement of the Hubble constant (H-0). Through their detection via follow-up of gravitational-wave (GW), short gamma-ray bursts (sGRBs) or optical surveys, a large sample of kilonovae (even without GW data) can be used for H-0 contraints. Here, we show measurement of H-0 using light curves associated with four sGRBs, assuming these are attributable to kilonovae, combined with GW170817. Including a systematic uncertainty on the models that is as large as the statistical ones, we find H0=73.8-5.8+6.3kms-1Mpc-1 and H0=71.2-3.1+3.2kms-1Mpc-1 for two different kilonova models that are consistent with the local and inverse-distance ladder measurements. For a given model, this measurement is about a factor of 2-3 more precise than the standard-siren measurement for GW170817 using only GWs. Kilonovae observations can be used to out constraints on the Hubble constant (H0). Here, the authors show H0 measurements by combining light curves of four short gamma-ray burts with GW170817 are about a factor of 2-3 more precise than the standard-siren measurements using only gravitational-waves.
  •  
5.
  • Pang, Peter T. H., et al. (författare)
  • An updated nuclear-physics and multi-messenger astrophysics framework for binary neutron star mergers
  • 2023
  • Ingår i: Nature Communications. - 2041-1723. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The multi-messenger detection of the gravitational-wave signal GW170817, the corresponding kilonova AT2017gfo and the short gamma-ray burst GRB170817A, as well as the observed afterglow has delivered a scientific breakthrough. For an accurate interpretation of all these different messengers, one requires robust theoretical models that describe the emitted gravitational-wave, the electromagnetic emission, and dense matter reliably. In addition, one needs efficient and accurate computational tools to ensure a correct cross-correlation between the models and the observational data. For this purpose, we have developed the Nuclear-physics and Multi-Messenger Astrophysics framework NMMA. The code allows incorporation of nuclear-physics constraints at low densities as well as X-ray and radio observations of isolated neutron stars. In previous works, the NMMA code has allowed us to constrain the equation of state of supranuclear dense matter, to measure the Hubble constant, and to compare dense-matter physics probed in neutron-star mergers and in heavy-ion collisions, and to classify electromagnetic observations and perform model selection. Here, we show an extension of the NMMA code as a first attempt of analyzing the gravitational-wave signal, the kilonova, and the gamma-ray burst afterglow simultaneously. Incorporating all available information, we estimate the radius of a 1.4M⊙ neutron star to be R = 11.98+0.35−0.40 km.
  •  
6.
  • Raaijmakers, Geert, et al. (författare)
  • The Challenges Ahead for Multimessenger Analyses of Gravitational Waves and Kilonova : A Case Study on GW190425
  • 2021
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 922:2
  • Tidskriftsartikel (refereegranskat)abstract
    • In recent years, there have been significant advances in multimessenger astronomy due to the discovery of the first, and so far only confirmed, gravitational wave event with a simultaneous electromagnetic (EM) counterpart, as well as improvements in numerical simulations, gravitational wave (GW) detectors, and transient astronomy. This has led to the exciting possibility of performing joint analyses of the GW and EM data, providing additional constraints on fundamental properties of the binary progenitor and merger remnant. Here, we present a new Bayesian framework that allows inference of these properties, while taking into account the systematic modeling uncertainties that arise when mapping from GW binary progenitor properties to photometric light curves. We extend the relative binning method presented in Zackay et al. to include extrinsic GW parameters for fast analysis of the GW signal. The focus of our EM framework is on light curves arising from r-process nucleosynthesis in the ejected material during and after merger, the so-called kilonova, and particularly on black hole-neutron star systems. As a case study, we examine the recent detection of GW190425, where the primary object is consistent with being either a black hole or a neutron star. We show quantitatively how improved mapping between binary progenitor and outflow properties, and/or an increase in EM data quantity and quality are required in order to break degeneracies in the fundamental source parameters.
  •  
7.
  • Stachie, Cosmin, et al. (författare)
  • Predicting electromagnetic counterparts using low-latency gravitational-wave data products
  • 2021
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 505:3, s. 4235-4248
  • Tidskriftsartikel (refereegranskat)abstract
    • Searches for gravitational-wave counterparts have been going in earnest since GW170817 and the discovery of AT2017gfo. Since then, the lack of detection of other optical counterparts connected to binary neutron star or black hole-neutron star candidates has highlighted the need for a better discrimination criterion to support this effort. At the moment, low-latency gravitational-wave alerts contain preliminary information about binary properties and hence whether a detected binary might have an electromagnetic counterpart. The current alert method is a classifier that estimates the probability that there is a debris disc outside the black hole created during the merger as well as the probability of a signal being a binary neutron star, a black hole-neutron star, a binary black hole, or of terrestrial origin. In this work, we expand upon this approach to both predict the ejecta properties and provide contours of potential light curves for these events, in order to improve the follow-up observation strategy. The various sources of uncertainty are discussed, and we conclude that our ignorance about the ejecta composition and the insufficient constraint of the binary parameters by low-latency pipelines represent the main limitations. To validate the method, we test our approach on real events from the second and third Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO)-Virgo observing runs.
  •  
8.
  • Tews, Ingo, et al. (författare)
  • On the Nature of GW190814 and Its Impact on the Understanding of Supranuclear Matter
  • 2021
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 908:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The observation of a compact object with a mass of 2.50-2.67M99.9%. Even if we weaken previously employed constraints on the maximum mass of neutron stars, the probability of a binary black hole origin is still similar to 81%. Furthermore, we study the impact that this observation has on our understanding of the nuclear equation of state by analyzing the allowed region in the mass-radius diagram of neutron stars for both a binary black hole or neutron star-black hole scenario. We find that the unlikely scenario in which the secondary object was a neutron star requires rather stiff equations of state with a maximum speed of sound c(x) >= root 0.6 times the speed of light, while the binary black hole scenario does not offer any new insight.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy