SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Aradi D) "

Sökning: WFRF:(Aradi D)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • 2017
  • swepub:Mat__t
  •  
2.
  • Labit, B., et al. (författare)
  • Dependence on plasma shape and plasma fueling for small edge-localized mode regimes in TCV and ASDEX Upgrade
  • 2019
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 59:8
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2019 Institute of Physics Publishing. All rights reserved. Within the EUROfusion MST1 work package, a series of experiments has been conducted on AUG and TCV devices to disentangle the role of plasma fueling and plasma shape for the onset of small ELM regimes. On both devices, small ELM regimes with high confinement are achieved if and only if two conditions are fulfilled at the same time. Firstly, the plasma density at the separatrix must be large enough (ne,sep/nG ∼ 0.3), leading to a pressure profile flattening at the separatrix, which stabilizes type-I ELMs. Secondly, the magnetic configuration has to be close to a double null (DN), leading to a reduction of the magnetic shear in the extreme vicinity of the separatrix. As a consequence, its stabilizing effect on ballooning modes is weakened.
  •  
3.
  •  
4.
  • Pokol, Gergö, 1979, et al. (författare)
  • Runaway electron modelling in the self-consistent core European Transport Simulator
  • 2019
  • Ingår i: Nuclear Fusion. - : Institute of Physics Publishing (IOPP). - 0029-5515 .- 1741-4326. ; 59:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Relativistic runaway electrons are a major concern in tokamaks. Although significant theoretical development had been undertaken in recent decades, we still lack a self-consistent simulator that could simultaneously capture all aspects of this phenomenon. The European framework for Integrated Modelling (EU-IM) facilitates the integration of different plasma simulation tools by providing a standard data structure for communication that enables relatively easy integration of different physics codes. A three-level modelling approach was adopted for runaway electron simulations within the EU-IM. Recently, a number of runaway electron modelling modules have been integrated into this framework. The first level of modelling (Runaway Indicator) is limited to the indication if runaway electron generation is possible or likely. The second level (Runaway Fluid) adopts an approach similar to e.g. the GO code, using analytical formulas to estimate changes in the runaway electron current density. The third level is based on the solution of the electron kinetics. One such code is LUKE that can handle the toroidicity-induced effects by solving the bounce-averaged Fokker-Planck equation. Another approach is used in NORSE, which features a fully nonlinear collision operator that makes it capable of simulating major changes in the electron distribution, for example slide-away. Both codes handle the effect of radiation on the runaway distribution. These runaway-electron modelling codes are in different stages of integration into the EU-IM infrastructure, and into the European Transport Simulator (ETS), which is a fully capable modular 1.5D core transport simulator. The ETS with Runaway Fluid was benchmarked to the GO code implementing similar physics. Coherent integration of kinetic solvers requires more effort on the coupling, especially regarding the definition of the boundary between runaway and thermal populations, and on consistent calculation of resistivity. Some of these issues are discussed.
  •  
5.
  • Olasz, S., et al. (författare)
  • Runaway electron modelling in the EU-IM framework
  • 2021
  • Ingår i: 47th EPS Conference on Plasma Physics, EPS 2021. - : European Physical Society (EPS). ; 2021-June, s. 1156-1159
  • Konferensbidrag (refereegranskat)abstract
    • The Runaway Electron Test Workflow was used to study the behaviour of the Dreicer generation of runaway electrons in dynamic scenarios to find a parameter which can be used to determine the need of kinetic modelling in more complex simulations. It was found that for processes which vary faster than the collision time at the critical velocity for runaway electron generation, kinetic modelling is advised to capture potential kinetic effects. A more complex tool, the ETS have been used to simulate a self-consistent thermal quench induced by massive material injection with promising initial results. Development of ETS capabilities continues with introduction of kinetic modelling and moving onto the new ETS6 versions.
  •  
6.
  • Olasz, S., et al. (författare)
  • Validity of models for Dreicer generation of runaway electrons in dynamic scenarios
  • 2021
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 61:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Runaway electron modelling efforts are motivated by the risk these energetic particles pose to large fusion devices. The sophisticated kinetic models can capture most features of the runaway electron generation but have high computational costs, which can be avoided by using computationally cheaper reduced kinetic codes. This paper compares the reduced kinetic and kinetic models to determine when the former solvers, based on analytical calculations assuming quasi-stationarity, can be used. The Dreicer generation rate is calculated by two different solvers in parallel in a workflow developed in the European integrated modelling framework, and this is complemented by calculations of a third code that is not yet integrated into the framework. Runaway Fluid, a reduced kinetic code, NORSE, a kinetic code using non-linear collision operator, and DREAM, a linearized Fokker-Planck solver, are used to investigate the effect of a dynamic change in the electric field for different plasma scenarios spanning across the whole tokamak-relevant range. We find that on time scales shorter than or comparable to the electron-electron collision time at the critical velocity for runaway electron generation, kinetic effects not captured by reduced kinetic models play an important role. This characteristic time scale is easy to calculate and can reliably be used to determine whether there is a need for kinetic modelling or cheaper reduced kinetic codes are expected to deliver sufficiently accurate results. This criterion can be automated, and thus it can be of great benefit for the comprehensive self-consistent modelling frameworks that are attempting to simulate complex events such as tokamak start-up or disruptions.
  •  
7.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy