SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Armand P) ;lar1:(kth)"

Sökning: WFRF:(Armand P) > Kungliga Tekniska Högskolan

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Abdalla, H., et al. (författare)
  • A very-high-energy component deep in the gamma-ray burst afterglow
  • 2019
  • Ingår i: Nature. - : Nature Publishing Group. - 0028-0836 .- 1476-4687. ; 575:7783, s. 464-467
  • Tidskriftsartikel (refereegranskat)abstract
    • Gamma-ray bursts (GRBs) are brief flashes of gamma-rays and are considered to be the most energetic explosive phenomena in the Universe(1). The emission from GRBs comprises a short (typically tens of seconds) and bright prompt emission, followed by a much longer afterglow phase. During the afterglow phase, the shocked outflow-produced by the interaction between the ejected matter and the circumburst medium-slows down, and a gradual decrease in brightness is observed(2). GRBs typically emit most of their energy via.-rays with energies in the kiloelectronvolt-to-megaelectronvolt range, but a few photons with energies of tens of gigaelectronvolts have been detected by space-based instruments(3). However, the origins of such high-energy (above one gigaelectronvolt) photons and the presence of very-high-energy (more than 100 gigaelectronvolts) emission have remained elusive(4). Here we report observations of very-high-energy emission in the bright GRB 180720B deep in the GRB afterglow-ten hours after the end of the prompt emission phase, when the X-ray flux had already decayed by four orders of magnitude. Two possible explanations exist for the observed radiation: inverse Compton emission and synchrotron emission of ultrarelativistic electrons. Our observations show that the energy fluxes in the X-ray and gamma-ray range and their photon indices remain comparable to each other throughout the afterglow. This discovery places distinct constraints on the GRB environment for both emission mechanisms, with the inverse Compton explanation alleviating the particle energy requirements for the emission observed at late times. The late timing of this detection has consequences for the future observations of GRBs at the highest energies.
  •  
3.
  • da Silva, Edson P., et al. (författare)
  • Combined Optical and Electrical Spectrum Shaping for High-Baud-Rate Nyquist-WDM Transceivers
  • 2016
  • Ingår i: IEEE Photonics Journal. - : Institute of Electrical and Electronics Engineers (IEEE). - 1943-0655. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We discuss the benefits and limitations of optical time-division multiplexing (OTDM) techniques based on the optical generation of a periodic train of sinc pulses for wavelength-division multiplexing (WDM) transmission at high baud rates. It is shown how the modulated OTDM spectrum bandwidth is related to the optical comb parameters and the pulse shaping of the modulating waveforms in the electrical domain. Such dependence may result in broadening of the modulated spectra, which can degrade the performance of Nyquist-WDM systems due to interchannel crosstalk penalties. However, it is shown and experimentally demonstrated that the same technique of optical pulse train generation can be allied with digital pulse shaping to improve the confinement of the modulated spectrum toward the Nyquist limit independently of the number of OTDM tributaries used. To investigate the benefits of the proposed approach, we demonstrate the first WDM Nyquist-OTDM signal generation based on the periodic train of sinc pulses and electrical spectrum shaping. Straight line transmission of five 112.5-Gbd Nyquist-OTDM dual-polarization quadrature phase-shift keying (QPSK) channels is demonstrated over a dispersion uncompensated link up to 640 km, with full-field coherent detection at the receiver. It is shown that such a design strategy effectively improves the spectral confinement of the modulated OTDM signal, providing a minimum intercarrier crosstalk penalty of 1.5 dB in baud-rate-spaced Nyquist-WDM systems.
  •  
4.
  • Massier, Lucas, et al. (författare)
  • An integrated single cell and spatial transcriptomic map of human white adipose tissue
  • 2023
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Single-cell studies of human white adipose tissue (WAT) provide insights into the specialized cell types in the tissue. Here the authors combine publicly available and newly generated high-resolution and bulk transcriptomic results from multiple human datasets to provide a comprehensive cellular map of white adipose tissue. To date, single-cell studies of human white adipose tissue (WAT) have been based on small cohort sizes and no cellular consensus nomenclature exists. Herein, we performed a comprehensive meta-analysis of publicly available and newly generated single-cell, single-nucleus, and spatial transcriptomic results from human subcutaneous, omental, and perivascular WAT. Our high-resolution map is built on data from ten studies and allowed us to robustly identify >60 subpopulations of adipocytes, fibroblast and adipogenic progenitors, vascular, and immune cells. Using these results, we deconvolved spatial and bulk transcriptomic data from nine additional cohorts to provide spatial and clinical dimensions to the map. This identified cell-cell interactions as well as relationships between specific cell subtypes and insulin resistance, dyslipidemia, adipocyte volume, and lipolysis upon long-term weight changes. Altogether, our meta-map provides a rich resource defining the cellular and microarchitectural landscape of human WAT and describes the associations between specific cell types and metabolic states.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy