SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Arosio M.) ;pers:(Aprile Francesco A.)"

Search: WFRF:(Arosio M.) > Aprile Francesco A.

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Aprile, Francesco A., et al. (author)
  • Selective targeting of primary and secondary nucleation pathways in Ab42 aggregation using a rational antibody scanning method
  • 2017
  • In: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 3:6
  • Journal article (peer-reviewed)abstract
    • Antibodies targeting Ab42 are under intense scrutiny because of their therapeutic potential for Alzheimer’s disease. To enable systematic searches, we present an “antibody scanning” strategy for the generation of a panel of antibodies against Ab42. Each antibody in the panel is rationally designed to target a specific linear epitope, with the selected epitopes scanning the Ab42 sequence. By screening in vitro the panel to identify the specific microscopic steps in the Ab42 aggregation process influenced by each antibody, we identify two antibodies that target specifically the primary and the secondary nucleation steps, which are key for the production of Ab42 oligomers. These two antibodies act, respectively, to delay the onset of aggregation and to block the proliferation of aggregates, and correspondingly reduce the toxicity in a Caenorhabditis elegans model over-expressing Ab42. These results illustrate how the antibody scanning method described here can be used to readily obtain very small antibody libraries with extensive coverage of the sequences of target proteins.
  •  
2.
  • Arosio, Paolo, et al. (author)
  • Microfluidic Diffusion Analysis of the Sizes and Interactions of Proteins under Native Solution Conditions.
  • 2016
  • In: ACS Nano. - : American Chemical Society (ACS). - 1936-086X .- 1936-0851. ; 10:1, s. 333-341
  • Journal article (peer-reviewed)abstract
    • Characterizing the sizes and interactions of macromolecules under native conditions is a challenging problem in many areas of molecular sciences, which fundamentally arises from the polydisperse nature of biomolecular mixtures. Here, we describe a microfluidic platform for diffusional sizing based on monitoring micron-scale mass transport simultaneously in space and time. We show that the global analysis of such combined space-time data enables the hydrodynamic radii of individual species within mixtures to be determined directly by deconvoluting average signals into the contributions from the individual species. We demonstrate that the ability to perform rapid noninvasive sizing allows this method to be used to characterize interactions between biomolecules under native conditions. We illustrate the potential of the technique by implementing a single-step quantitative immunoassay that operates on a time scale of seconds and detects specific interactions between biomolecules within complex mixtures.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view